Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31036686

RESUMEN

Antibiotic hypersensitive bacterial mutants (e.g., Escherichia coliimp) are used to investigate intrinsic resistance and are exploited in antibacterial discovery to track weak antibacterial activity of novel inhibitor compounds. Pseudomonas aeruginosa Z61 is one such drug-hypersusceptible strain generated by chemical mutagenesis, although the genetic basis for hypersusceptibility is not fully understood. Genome sequencing of Z61 revealed nonsynonymous single-nucleotide polymorphisms in 153 genes relative to its parent strain, and three candidate mutations (in oprM, ampC, and lptE) predicted to mediate hypersusceptibility were characterized. The contribution of these mutations was confirmed by genomic restoration of the wild-type sequences, individually or in combination, in the Z61 background. Introduction of the lptE mutation or genetic inactivation of oprM and ampC genes alone or together in the parent strain recapitulated drug sensitivities. This showed that disruption of oprM (which encodes a major outer membrane efflux pump channel) increased susceptibility to pump substrate antibiotics, that inactivation of the inducible ß-lactamase gene ampC contributed to ß-lactam susceptibility, and that mutation of the lipopolysaccharide transporter gene lptE strongly altered the outer membrane permeability barrier, causing susceptibility to large antibiotics such as rifampin and also to ß-lactams.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Lipopolisacáridos/metabolismo , Proteínas de Transporte de Membrana/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico/genética , Permeabilidad de la Membrana Celular/genética , Pruebas de Sensibilidad Microbiana/métodos , Mutación/genética , beta-Lactamas/farmacología
2.
J Bacteriol ; 194(5): 1195-204, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22194456

RESUMEN

Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium best known as the predominant opportunistic pathogen infecting the lungs of cystic fibrosis patients. In this context, it is thought to form biofilms, within which locally reducing and acidic conditions can develop that favor the stability of ferrous iron [Fe(II)]. Because iron is a signal that stimulates biofilm formation, we performed a microarray study to determine whether P. aeruginosa strain PA14 exhibits a specific transcriptional response to extracellular Fe(II). Among the genes that were most upregulated in response to Fe(II) were those encoding the two-component system BqsR/BqsS, previously identified for its role in P. aeruginosa strain PAO1 biofilm decay (13); here, we demonstrate its role in extracellular Fe(II) sensing. bqsS and bqsR form an operon together with two small upstream genes, bqsP and bqsQ, and one downstream gene, bqsT. BqsR/BqsS sense extracellular Fe(II) at physiologically relevant concentrations (>10 µM) and elicit a specific transcriptional response, including its autoregulation. The sensor distinguishes between Fe(II), Fe(III), and other dipositive cations [Ca(II), Cu(II), Mg(II), Mn(II), Zn(II)] under aerobic or anaerobic conditions. The gene that is most upregulated by BqsR/BqsS, as measured by quantitative reverse transcription-PCR (qRT-PCR), is PA14_04180, which is predicted to encode a periplasmic oligonucleotide/oligosaccharide-binding domain (OB-fold) protein. Coincident with phenazine production during batch culture growth, Fe(II) becomes the majority of the total iron pool and bqsS is upregulated. The existence of a two-component system that senses Fe(II) indicates that extracellular Fe(II) is an important environmental signal for P. aeruginosa.


Asunto(s)
Compuestos Ferrosos/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/fisiología , Transducción de Señal , Cationes Bivalentes/metabolismo , Perfilación de la Expresión Génica , Humanos , Metales/metabolismo , Análisis por Micromatrices , Modelos Biológicos , Operón , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Sci Rep ; 8(1): 15907, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30349061

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 8(1): 14124, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237436

RESUMEN

Phosphorylation of Pseudomonas aeruginosa lipopolysaccharide (LPS) is important for maintaining outer membrane integrity and intrinsic antibiotic resistance. We solved the crystal structure of the LPS heptose kinase WaaP, which is essential for growth of P. aeruginosa. WaaP was structurally similar to eukaryotic protein kinases and, intriguingly, was complexed with acylated-acyl carrier protein (acyl-ACP). WaaP produced by in vitro transcription-translation was insoluble unless acyl-ACP was present. WaaP variants designed to perturb the acyl-ACP interaction were less stable in cells and exhibited reduced kinase function. Mass spectrometry identified myristyl-ACP as the likely physiological binding partner for WaaP in P. aeruginosa. Together, these results demonstrate that acyl-ACP is required for WaaP protein solubility and kinase function. To the best of our knowledge, this is the first report describing acyl-ACP in the role of a cofactor necessary for the production and stability of a protein partner.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Pseudomonas aeruginosa/metabolismo , Acilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA