RESUMEN
BACKGROUND: Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE: We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS: We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS: RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS: These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.
Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/patología , Interleucina-13/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo , Proliferación CelularRESUMEN
BACKGROUND: A human study, Learning Early About Peanut Allergy (LEAP), showed that early introduction of peanut products decreases the prevalence of peanut allergy among children. However, the immunologic mechanisms mediating the protective effects of consuming peanut products are not well understood. OBJECTIVE: The objective was to develop a mouse model that simulates the LEAP study and investigate the underlying mechanisms for the study observations. METHODS: Adult naive BALB/c mice were fed a commercial peanut butter product (Skippy) or buffer control and concomitantly exposed to peanut flour through the airway or skin to mimic environmental exposure. The animals were analyzed for anaphylactic reaction and by molecular and immunologic approaches. RESULTS: After exposure to peanut flour through the airway or skin, naive mice developed peanut allergy, as demonstrated by acute and systemic anaphylaxis in response to challenge with peanut extract. Ingestion of Skippy, however, nearly abolished the increase in peanut-specific IgE and IgG and protected animals from developing anaphylaxis. Skippy-fed mice showed reduced numbers of T follicular helper (Tfh) cells and germinal center B cells in their draining lymph nodes, and single-cell RNA sequencing revealed a CD4+ T-cell population expressing cytotoxic T lymphocyte-associated protein 4 (CTLA-4) in these animals. Critically, blocking CTLA-4 with antibody increased levels of peanut-specific antibodies and reversed the protective effects of Skippy. CONCLUSION: Ingestion of a peanut product protects mice from peanut allergy induced by environmental exposure to peanuts, and the CTLA-4 pathway, which regulates Tfh cell responses, likely plays a pivotal role in this protection.
Asunto(s)
Anafilaxia , Antígeno CTLA-4 , Hipersensibilidad al Cacahuete , Alérgenos , Anafilaxia/prevención & control , Animales , Arachis , Antígeno CTLA-4/metabolismo , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Ratones , Ratones Endogámicos BALB C , Hipersensibilidad al Cacahuete/prevención & controlRESUMEN
Peanut allergy is a growing public concern; however, little is known about the immunological mechanism(s) that initiate the disease process. Our knowledge is also limited regarding the role of group 2 innate lymphoid cells (ILC2s) in regulating humoral immunity. To fill these major gaps in our knowledge, we investigated the immunological mechanisms involved in peanut allergen sensitization by using mouse models. To mimic environmental exposure in humans, naive BALB/c mice were exposed to peanut flour by inhalation without any exogenous adjuvants. When exposed to peanut flour, naive mice developed T follicular helper (Tfh) cells in their lung draining lymph nodes and produced IgE Abs to peanuts. Mice deficient in IL-13 showed decreased numbers of Tfh cells and germinal center B cells and produced significantly fewer IgE Abs. IL-13 was necessary and sufficient for induction of CD11c+ MHC class IIhi dendritic cells that are implicated in Tfh cell development. Importantly, lung ILC2s served as a predominant early source of IL-13 when naive mice were exposed to peanut flour. Furthermore, mice that are deficient in lung ILC2s by bone marrow transfer from Rora sg/sg mice or by genetic manipulation produced significantly fewer IgE Abs to peanuts compared with control mice. These findings suggest lung ILC2s that serve as a rapid source of IL-13 upon allergen exposure play a major role in Tfh cell development, IgE Ab production, and initiation of peanut allergy.
Asunto(s)
Arachis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Hipersensibilidad al Cacahuete/inmunología , Células T Auxiliares Foliculares/inmunología , Alérgenos/inmunología , Animales , Linfocitos B , Femenino , Inmunidad Humoral/inmunología , Inmunoglobulina E/inmunología , Interleucina-13/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
In the past decade, research in the molecular and cellular underpinnings of basic and clinical immunology has significantly advanced our understanding of allergic disorders, allowing scientists and clinicians to diagnose and treat disorders such as asthma, allergic and nonallergic rhinitis, and food allergy. In this review, we discuss several significant recent developments in basic and clinical research as well as important future research directions in allergic inflammation. Certain key regulatory cytokines, genes and molecules have recently been shown to play key roles in allergic disorders. For example, interleukin-33 (IL-33) plays an important role in refractory disorders such as asthma, allergic rhinitis and food allergy, mainly by inducing T helper (Th) 2 immune responses and clinical trials with IL-33 inhibitors are underway in food allergy. We discuss interleukin 4 receptor pathways, which recently have been shown to play a critical role among the allergic inflammatory pathways that drive allergic disorders and pathogenesis. Further, the cytokine thymic stromal lymphopoietin (TSLP) has recently been shown as a factor in maintaining immune homeostasis and regulating type 2 inflammatory responses at mucosal barriers in allergic inflammation and targeting TSLP-mediated signalling is considered an attractive therapeutic strategy. In addition, new findings establish an important T cell-intrinsic role of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) proteolytic activity in the suppression of autoimmune responses. We have seen how mutations in the filaggrin gene are a significant risk factor for allergic diseases such as atopic dermatitis, asthma, allergic rhinitis, food allergy, contact allergy, and hand eczema. We are only beginning to understand the mechanisms by which the human microbiota may be regulating the immune system, and how sudden changes in the composition of the microbiota may have profound effects, linked with an increased risk of developing chronic inflammatory disorders, including allergies. New research has shown the important but complex role monocytes play in disorders such as food allergies. Finally, we discuss some of the new directions of research in this area, particularly the important use of biologicals in oral immunotherapy, advances in gene therapy, multifood therapy, novel diagnostics in diagnosing allergic disorders and the central role that omics play in creating molecular signatures and biomarkers of allergic disorders such as food allergy. Such exciting new developments and advances have significantly moved forth our ability to understand the mechanisms underlying allergic diseases for improved patient care.
Asunto(s)
Asma , Dermatitis Atópica , Hipersensibilidad a los Alimentos , Rinitis Alérgica , Citocinas , Proteínas Filagrina , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/terapia , Humanos , Inflamación , Rinitis Alérgica/diagnóstico , Rinitis Alérgica/terapiaRESUMEN
OBJECTIVE: Recombinant adeno-associated virus (AAV)-based vectors are characterized by their robust and safe transgene delivery. The CRISPR/Cas9 and guide RNA (gRNA) system present a promising genome-editing platform, and a recent development of a shorter Cas9 enzyme from Staphylococcus aureus (SaCas9) allows generation of high titer single AAV vectors which carry both saCas9- and gRNA-expression cassettes. Here, we used two AAV-SaCas9 vectors with distinct GFP-targeted gRNA sequences and determined the impact of AAV-SaCas9-gRNA vector treatment in a single cell clone carrying a GFP-expression cassette. RESULTS: Our results showed comparable GFP knockout efficiencies (40-50%) upon a single low-dose infection. Three consecutive transductions of 25-fold higher doses of vectors showed 80% GFP knockout efficiency. To analyze the "AAV-SaCas9-resistant cell population", we sorted the residual GFP-positive cells and assessed their permissiveness to super-infection with two AAV-Cas9-GFP vectors. We found the sorted cells were significantly more resistant to the GFP knockout mediated by the same AAV vector, but not by the other GFP-targeted AAV vector. Our data therefore demonstrate highly efficient genome-editing by the AAV-SaCas9-gRNA vector system. Differential susceptibilities of single cell-derived cells to the AAV-SaCas9-gRNA-mediated genome editing may represent a formidable barrier to achieve 100% genome editing efficiency by this vector system.
Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Dependovirus , Endonucleasas/genética , Secuenciación del Exoma , Edición Génica , Vectores Genéticos , ARN Guía de Kinetoplastida , Staphylococcus aureus/enzimología , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Línea Celular , Susceptibilidad a Enfermedades , Proteínas Fluorescentes Verdes , Células HEK293 , HumanosRESUMEN
Immunosuppression in the tumor microenvironment blunts vaccine-induced immune effectors. PD-1/B7-H1 is an important inhibitory axis in the tumor microenvironment. Our goal in this study was to determine the effect of blocking this inhibitory axis during and following vaccination against breast cancer. We observed that using anti-PD-1 antibody and a multipeptide vaccine (consisting of immunogenic peptides derived from breast cancer antigens, neu, legumain, and ß-catenin) as a combination therapy regimen for the treatment of breast cancer-bearing mice prolonged the vaccine-induced progression-free survival period. This prolonged survival was associated with increase in number of Tc1 and Tc2 CD8 T cells with memory precursor phenotype, CD27+IL-7RhiT-betlo, and decrease in number of PD-1+ dendritic cells (DC) in regressing tumors and enhanced antigen reactivity of tumor-infiltrating CD8 T cells. It was also observed that blockade of PD-1 on tumor DCs enhanced IL-7R expression on CD8 T cells. Taken together, our results suggest that PD-1 blockade enhances breast cancer vaccine efficacy by altering both CD8 T cell and DC components of the tumor microenvironment. Given the recent success of anti-PD-1 monotherapy, our results are encouraging for developing combination therapies for the treatment of patients with cancer in which anti-PD-1 monotherapy alone may be ineffective (i.e., PD-L1-negative tumors).
Asunto(s)
Anticuerpos/inmunología , Anticuerpos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Memoria Inmunológica/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Supervivencia sin Enfermedad , Femenino , Memoria Inmunológica/efectos de los fármacos , Mastocitoma/inmunología , Mastocitoma/terapia , Ratones , Ratones Endogámicos BALB C , Receptores de Interleucina-7/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunologíaRESUMEN
Ovarian cancer mortality ranks highest among all gynecologic cancers with growth factor pathways playing an integral role in tumorigenesis, metastatic dissemination, and therapeutic resistance. The HER and VEGF receptor (VEGFR) are both overexpressed and/or aberrantly activated in subsets of ovarian tumors. While agents targeting either the HER or VEGF pathways alone have been investigated, the impact of these agents have not led to overall survival benefit in ovarian cancer. We tested the hypothesis that cotargeting HER and VEGFR would maximize antitumor efficacy at tolerable doses. To this end, ovarian cancer xenografts grown intraperitoneally in athymic nude mice were tested in response to AC480 (pan-HER inhibitor, "HERi"), cediranib (pan-VEGFR inhibitor "VEGFRi"), or BMS-690514 (combined HER/VEGFR inhibitor "EVRi"). EVRi was superior to both HERi and VEGFRi in terms of tumor growth, final tumor weight, and progression-free survival. Correlative tumor studies employing phosphoproteomic antibody arrays revealed distinct agent-specific alterations, with EVRi inducing the greatest overall effect on growth factor signaling. These data suggest that simultaneous inhibition of HER and VEGFR may benefit select subsets of ovarian cancer tumors. To this end, we derived a novel HER/VEGF signature that correlated with poor overall survival in high-grade, late stage, serous ovarian cancer patient tumors.
Asunto(s)
Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Quinazolinas/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Análisis por Conglomerados , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Clasificación del Tumor , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Piperidinas/administración & dosificación , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Pirroles/administración & dosificación , Pirroles/farmacología , Quinazolinas/administración & dosificación , Transducción de Señal , Triazinas/administración & dosificación , Triazinas/farmacología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Gliomas have a dismal prognosis, with the median survival of patients with the most common histology, glioblastoma multiforme, being only 12-15 months. Development of novel therapeutic agents is urgently needed. We have previously demonstrated that oncolytic measles virus strains derived from the Edmonston vaccine lineage have significant antitumor activity against gliomas [Phuong, L.K., Allen, C., Peng, K.W., Giannini, C., Greiner, S., Teneyck, C.J., Mishra, P.K., Macura, S.I., Russell, S.J., Galanis, E.C. (2003). Cancer. Res. 63, 2462-2469]. MV-CEA is an Edmonston vaccine lineage measles virus strain engineered to express the marker peptide carcinoembryonic antigen (CEA): CEA levels can serve as a correlate of viral gene expression. In support of a phase I clinical trial of intratumoral and resection cavity administration of MV-CEA to patients with recurrent gliomas, we assessed the neurotoxicity of MV-CEA in adult immune male rhesus macaques (Macaca mulatta). The animals ' immune status and administration schedule mimicked the trial population and proposed administration schema. Macaca mulatta represents the prototype animal species for assessment of measles neurotoxicity. The animals were stereotactically administered either vehicle (n = 1) or MV-CEA at 2 x 10(5)or 2 x 10(6) TCID(50) (each, n = 2) in the right frontal lobe in two injections on days 1 and 5. Macaques were closely monitored clinically for neurotoxicity. Body weight, temperature, complete blood count, CEA, clinical chemistries, coagulation, complement levels, immunoglobulin, measles antibody titers, viremia, and shedding (buccal swabs) were tested at multiple time points. Furthermore, cisterna magna spinal taps were performed on day 9 and 1 year after the first viral dose administration, and samples were analyzed for protein, glucose, cell differential, and presence of MV-CEA. Magnetic resonance imaging (MRI) was performed between 4 and 5 months after article administration to assess for subclinical neurotoxicity. To date, 36+ months from study initiation there has been no clinical or biochemical evidence of toxicity, including lack of neurological symptoms, fever, or other systemic symptoms and lack of immunosuppression. Quantitative RT-PCR analysis of blood, buccal swabs, and cerebrospinal fluid (CSF) was negative for MV-CEA at all time points, with the exception of viral genome deletion in the blood of one asymptomatic animal at the 2 x 10(6) TCID(50) dose level on day 85. Vero cell overlays of CSF cells and supernatant were negative for viral recovery. There was no detection of CEA in serum or CSF at any time point. MRI scans were negative for imaging abnormalities and showed no evidence of encephalitis. Our results support the safety of CNS administration of MV-CEA in glioma patients. A clinical trial of intratumoral and resection cavity administration of MV-CEA in patients with recurrent glioblastoma multiforme is currently ongoing.