Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 32(35): 11970-9, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933782

RESUMEN

Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opiomelanocortin (POMC) neurons. We identified the polysialic acid molecule (PSA) as a mediator of the diet-induced rewiring of arcuate POMC. Moreover, local pharmacological inhibition and genetic disruption of the PSA signaling limits the behavioral and metabolic adaptation to HFD, as treated mice failed to normalize energy intake and showed increased body weight gain after the HFD challenge. Altogether, these findings reveal the existence of physiological hypothalamic rewiring involved in the homeostatic response to dietary fat. Furthermore, defects in the hypothalamic plasticity-driven adaptive response to HFD are obesogenic and could be involved in the development of metabolic diseases.


Asunto(s)
Adaptación Fisiológica/fisiología , Núcleo Arqueado del Hipotálamo/fisiología , Grasas de la Dieta/administración & dosificación , Proopiomelanocortina/fisiología , Ácidos Siálicos/fisiología , Animales , Ingestión de Energía/genética , Metabolismo Energético/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/fisiología , Plasticidad Neuronal/genética , Técnicas de Cultivo de Órganos , Proopiomelanocortina/metabolismo , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Transducción de Señal/genética , Aumento de Peso/genética
2.
Neurobiol Aging ; 34(1): 211-25, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22727275

RESUMEN

Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Amiloidosis/etiología , Amiloidosis/prevención & control , Trastornos del Conocimiento/enfermería , Ambiente , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Calbindinas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuropéptido Y/metabolismo , Reconocimiento en Psicología/fisiología , Proteína G de Unión al Calcio S100/metabolismo , Conducta Espacial/fisiología , Estadísticas no Paramétricas
3.
PLoS One ; 8(9): e76497, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086745

RESUMEN

At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Hipocampo/fisiopatología , Neurogénesis , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Biomarcadores/metabolismo , Calbindina 1/metabolismo , Recuento de Células , Movimiento Celular , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Neuropéptido Y/metabolismo , Factores de Tiempo
4.
PLoS One ; 8(8): e72029, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967273

RESUMEN

The hypothalamus plays a crucial role in the control of the energy balance and also retains neurogenic potential into adulthood. Recent studies have reported the severe alteration of the cell turn-over in the hypothalamus of obese animals and it has been proposed that a neurogenic deficiency in the hypothalamus could be involved in the development of obesity. To explore this possibility, we examined hypothalamic cell renewal during the homeostatic response to dietary fat in mice, i.e., at the onset of diet-induced obesity. We found that switching to high-fat diet (HFD) accelerated cell renewal in the hypothalamus through a local, rapid and transient increase in cell proliferation, peaking three days after introducing the HFD. Blocking HFD-induced cell proliferation by central delivery of an antimitotic drug prevented the food intake normalization observed after HFD introduction and accelerated the onset of obesity. This result showed that HFD-induced dividing brain cells supported an adaptive anorectic function. In addition, we found that the percentage of newly generated neurons adopting a POMC-phenotype in the arcuate nucleus was increased by HFD. This observation suggested that the maturation of neurons in feeding circuits was nutritionally regulated to adjust future energy intake. Taken together, these results showed that adult cerebral cell renewal was remarkably responsive to nutritional conditions. This constituted a physiological trait required to prevent severe weight gain under HFD. Hence this report highlighted the amazing plasticity of feeding circuits and brought new insights into our understanding of the nutritional regulation of the energy balance.


Asunto(s)
Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/etiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Astrocitos/metabolismo , Proliferación Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hipotálamo/citología , Masculino , Ratones , Proopiomelanocortina/metabolismo , Aumento de Peso
5.
PLoS One ; 7(7): e39087, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22802935

RESUMEN

OBJECTIVE: This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. METHODS: Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed. RESULTS: Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus. CONCLUSIONS: Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.


Asunto(s)
Axones/efectos de los fármacos , Hipotálamo/fisiología , Neuroglía/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Compuestos de Tungsteno/uso terapéutico , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas del Tejido Nervioso/efectos de los fármacos , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA