RESUMEN
Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1-ARNT-HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/inmunología , Células Th17/inmunología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/inmunología , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Citometría de Flujo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Immunoblotting , Interleucina-17/inmunología , Interleucina-17/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Th17/metabolismoRESUMEN
SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Craneosinostosis/genética , Trastornos del Neurodesarrollo/genética , Osteocondroma/genética , Factores de Transcripción SOXD/genética , Transporte Activo de Núcleo Celular , Adolescente , Secuencia de Aminoácidos , Secuencia de Bases , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Niño , Preescolar , Simulación por Computador , Femenino , Variación Estructural del Genoma/genética , Humanos , Lactante , Masculino , Mutación Missense , Trastornos del Neurodesarrollo/diagnóstico , RNA-Seq , Factores de Transcripción SOXD/química , Factores de Transcripción SOXD/metabolismo , Síndrome , Transcripción Genética , Transcriptoma , Translocación Genética/genéticaRESUMEN
PURPOSE: This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS: Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS: In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION: ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.
Asunto(s)
Catarata , Enanismo , Hepatoblastoma , Discapacidad Intelectual , Neoplasias Hepáticas , Micrognatismo , Niño , Femenino , Retardo del Crecimiento Fetal/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , SíndromeRESUMEN
Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located ß-HC DNAH11 (defining ODA type 1), and the distally localized ß-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the ß-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient ß-HCs such as that of the unicellular Chlamydomonas reinhardtii.
Asunto(s)
Dineínas Axonemales/genética , Cilios/genética , Dineínas/genética , Mutación/genética , Axonema/genética , Trastornos de la Motilidad Ciliar/genética , Humanos , Síndrome de Kartagener/genética , FenotipoRESUMEN
Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent. Upon transfection of HEK293 cells, we found that mutant RHOBTB2 was more abundant than the wild-type, most likely because of impaired degradation in the proteasome. Similarly, elevated amounts of the Drosophila ortholog RhoBTB in vivo were associated with seizure susceptibility and severe locomotor defects. Knockdown of RhoBTB in the Drosophila dendritic arborization neurons resulted in a decreased number of dendrites, thus suggesting a role of RhoBTB in dendritic development. We have established missense variants in the BTB-domain-encoding region of RHOBTB2 as causative for a developmental and epileptic encephalopathy and have elucidated the role of atypical Rho GTPase RhoBTB in Drosophila neurological function and possibly dendrite development.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epilepsia/genética , Proteínas de Unión al GTP/genética , Mutación Missense/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Secuencia de Aminoácidos , Animales , Conducta Animal , Niño , Preescolar , Dendritas/metabolismo , Femenino , Proteínas de Unión al GTP/química , Dosificación de Gen , Células HEK293 , Humanos , Masculino , Fenotipo , Sinapsis/patología , Proteínas Supresoras de Tumor/químicaRESUMEN
Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.
Asunto(s)
Enfermedades Cerebelosas/genética , Epilepsia Generalizada/genética , Facies , Mutación Missense/genética , Proteínas de Transporte Vesicular/genética , Edad de Inicio , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , FenotipoRESUMEN
Gene sequencing panels are a powerful diagnostic tool for many clinical presentations associated with genetic disorders. Advances in DNA sequencing technology have made gene panels more economical, flexible, and efficient. Because the genes included on gene panels vary widely between laboratories in gene content (e.g., number, reason for inclusion, evidence level for gene-disease association) and technical completeness (e.g., depth of coverage), standards that address technical and clinical aspects of gene panels are needed. This document serves as a technical standard for laboratories designing, offering, and reporting gene panel testing. Although these principles can apply to multiple indications for genetic testing, the primary focus is on diagnostic gene panels (as opposed to carrier screening or predictive testing) with emphasis on technical considerations for the specific genes being tested. This technical standard specifically addresses the impact of gene panel content on clinical sensitivity, specificity, and validity-in the context of gene evidence for contribution to and strength of evidence for gene-disease association-as well as technical considerations such as sequencing limitations, presence of pseudogenes/gene families, mosaicism, transcript choice, detection of copy-number variants, reporting, and disclosure of assay limitations.
Asunto(s)
Pruebas Genéticas/normas , Genética Médica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Técnicas de Diagnóstico Molecular/normas , Pruebas Genéticas/tendencias , Genética Médica/tendencias , Genómica/normas , Genómica/tendencias , Humanos , Laboratorios , Técnicas de Diagnóstico Molecular/tendencias , Mutación/genética , Estados UnidosRESUMEN
PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.
Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Ensamble y Desensamble de Cromatina/genética , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Anomalías Musculoesqueléticas/genética , Mutación Missense/genética , Fenotipo , Síndrome , Factores de Transcripción/genéticaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Craniofacial morphogenesis is regulated in part by signaling from the Endothelin receptor type A (EDNRA). Pathogenic variants in EDNRA signaling pathway components EDNRA, GNAI3, PCLB4, and EDN1 cause Mandibulofacial Dysostosis with Alopecia (MFDA), Auriculocondylar syndrome (ARCND) 1, 2, and 3, respectively. However, cardiovascular development is normal in MFDA and ARCND individuals, unlike Ednra knockout mice. One explanation may be that partial EDNRA signaling remains in MFDA and ARCND, as mice with reduced, but not absent, EDNRA signaling also lack a cardiovascular phenotype. Here we report an individual with craniofacial and cardiovascular malformations mimicking the Ednra -/- mouse phenotype, including a distinctive micrognathia with microstomia and a hypoplastic aortic arch. Exome sequencing found a novel homozygous missense variant in EDNRA (c.1142A>C; p.Q381P). Bioluminescence resonance energy transfer assays revealed that this amino acid substitution in helix 8 of EDNRA prevents recruitment of G proteins to the receptor, abrogating subsequent receptor activation by its ligand, Endothelin-1. This homozygous variant is thus the first reported loss-of-function EDNRA allele, resulting in a syndrome we have named Oro-Oto-Cardiac Syndrome. Further, our results illustrate that EDNRA signaling is required for both normal human craniofacial and cardiovascular development, and that limited EDNRA signaling is likely retained in ARCND and MFDA individuals. This work illustrates a straightforward approach to identifying the functional consequence of novel genetic variants in signaling molecules associated with malformation syndromes.
Asunto(s)
Anomalías Craneofaciales/genética , Enfermedades del Oído/genética , Oído/anomalías , Predisposición Genética a la Enfermedad , Disostosis Mandibulofacial/genética , Receptor de Endotelina A/genética , Animales , Anomalías Craneofaciales/fisiopatología , Oído/fisiopatología , Enfermedades del Oído/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Mutación con Pérdida de Función/genética , Disostosis Mandibulofacial/fisiopatología , Ratones , Ratones Noqueados , Morfogénesis/genética , Cresta Neural/crecimiento & desarrollo , Cresta Neural/patología , Fenotipo , Transducción de Señal/genéticaRESUMEN
Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Desmielinizantes/genética , Malformaciones del Sistema Nervioso/genética , Enfermedad de Pelizaeus-Merzbacher/genética , ARN Polimerasa III/genética , Tubulina (Proteína)/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Enfermedades Desmielinizantes/epidemiología , Enfermedades Desmielinizantes/patología , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades por Almacenamiento Lisosomal/epidemiología , Enfermedades por Almacenamiento Lisosomal/genética , Imagen por Resonancia Magnética , Masculino , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Malformaciones del Sistema Nervioso/patología , Enfermedad de Pelizaeus-Merzbacher/epidemiología , Enfermedad de Pelizaeus-Merzbacher/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.
Asunto(s)
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutación con Pérdida de Función , Mutación Missense , Receptor Notch2/genética , Síndrome de Alagille/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Proteína Jagged-1/metabolismo , Masculino , Tasa de Mutación , Linaje , Receptor Notch2/metabolismoRESUMEN
Purpose To characterize hepatocellular carcinoma (HCC) cells surviving ischemia with respect to cell cycle kinetics, chemosensitivity, and molecular dependencies that may be exploited to potentiate treatment with transarterial embolization (TAE). Materials and Methods Animal studies were performed according to institutionally approved protocols. The growth kinetics of HCC cells were studied in standard and ischemic conditions. Viability and cell cycle kinetics were measured by using flow cytometry. Cytotoxicity profiling was performed by using a colorimetric cell proliferation assay. Analyses of the Cancer Genome Atlas HCC RNA-sequencing data were performed by using Ingenuity Pathway Analysis software. Activation of molecular mediators of autophagy was measured with Western blot analysis and fluorescence microscopy. In vivo TAE was performed in a rat model of HCC with (n = 5) and without (n = 5) the autophagy inhibitor Lys05. Statistical analyses were performed by using GraphPad software. Results HCC cells survived ischemia with an up to 43% increase in the fraction of quiescent cells as compared with cells grown in standard conditions (P < .004). Neither doxorubicin nor mitomycin C potentiated the cytotoxic effects of ischemia. Gene-set analysis revealed an increase in mRNA expression of the mediators of autophagy (eg, CDKN2A, PPP2R2C, and TRAF2) in HCC as compared with normal liver. Cells surviving ischemia were autophagy dependent. Combination therapy coupling autophagy inhibition and TAE in a rat model of HCC resulted in a 21% increase in tumor necrosis compared with TAE alone (P = .044). Conclusion Ischemia induces quiescence in surviving HCC cells, resulting in a dependence on autophagy, providing a potential therapeutic target for combination therapy with TAE. © RSNA, 2017 Online supplemental material is available for this article.
Asunto(s)
Autofagia , Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular , Neoplasias Hepáticas Experimentales/irrigación sanguínea , Neoplasias Hepáticas Experimentales/patología , Animales , Línea Celular Tumoral , Supervivencia Celular , Embolización Terapéutica , Ratas , Ratas WistarRESUMEN
Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Supervivencia Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
We present a patient with neonatal onset of hypertonia and seizures identified through whole exome sequencing to have compound heterozygous variants, c.294dupA (p.Leu99fs) and c.1925C>A (p.Ala642Glu), in the BRCA1-associated protein required for ATM activation-1 (BRAT1) gene. Variants in BRAT1 have been identified to cause lethal neonatal rigidity and multifocal seizure syndrome (OMIM# 614498), which consistently manifests a severe neurological phenotype that includes neonatal presentation of rigidity and hypertonia, microcephaly and arrested head growth, intractable seizures, absence of developmental progress, apneic episodes, and death usually by 6 months of age. Our patient initially had a similarly severe neurological picture but remains alive at 6 years of age, expanding the phenotype to include longer term survival and providing further insights into genotype-phenotype correlations and the natural history of this disease.
Asunto(s)
Estudios de Asociación Genética , Proteínas Nucleares/genética , Alelos , Exoma , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Microcefalia/genética , Fenotipo , Convulsiones/genéticaRESUMEN
The cytokine IL-10 has an important role in limiting inflammation in many settings, including toxoplasmosis. In the present studies, an IL-10 reporter mouse was used to identify the sources of this cytokine following challenge with Toxoplasma gondii. During infection, multiple cell types expressed the IL-10 reporter but NK cells were a major early source of this cytokine. These IL-10 reporter(+) NK cells expressed high levels of the IL-12 target genes T-bet, KLRG1, and IFN-γ, and IL-12 depletion abrogated reporter expression. However, IL-12 signaling alone was not sufficient to promote NK cell IL-10, and activation of the aryl hydrocarbon receptor (AHR) was also required for maximal IL-10 production. NK cells basally expressed the AHR, relevant chaperone proteins, and the AHR nuclear translocator, which heterodimerizes with the AHR to form a competent transcription factor. In vitro studies revealed that IL-12 stimulation increased NK cell AHR levels, and the AHR and AHR nuclear translocator were required for optimal production of IL-10. Additionally, NK cells isolated from T. gondii-infected Ahr(-/-) mice had impaired expression of IL-10, which was associated with increased resistance to this infection. Taken together, these data identify the AHR as a critical cofactor involved in NK cell production of IL-10.
Asunto(s)
Interleucina-10/biosíntesis , Interleucina-12/metabolismo , Células Asesinas Activadas por Linfocinas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Toxoplasma/inmunología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/biosíntesis , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Dimerización , Genes Reporteros , Inflamación/inmunología , Interferón gamma/biosíntesis , Lectinas Tipo C , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/genética , Receptores Inmunológicos/biosíntesis , Transducción de Señal/inmunología , Proteínas de Dominio T Box/biosíntesis , Toxoplasmosis Animal/inmunologíaRESUMEN
We investigated whether chromosome 9 open reading frame 72 hexanucleotide repeat expansion (C9orf72 expansion) size in peripheral DNA was associated with clinical differences in frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) linked to C9orf72 repeat expansion mutations. A novel quantification workflow was developed to measure C9orf72 expansion size by Southern blot densitometry in a cross-sectional cohort of C9orf72 expansion carriers with FTD (n = 39), ALS (n = 33), both (n = 35), or who are unaffected (n = 21). Multivariate linear regressions were performed to assess whether C9orf72 expansion size from peripheral DNA was associated with clinical phenotype, age of disease onset, disease duration and age at death. Mode values of C9orf72 expansion size were significantly shorter in FTD compared to ALS (p = 0.0001) but were not associated with age at onset in either FTD or ALS. A multivariate regression model correcting for patient's age at DNA collection and disease phenotype revealed that C9orf72 expansion size is significantly associated with shorter disease duration (p = 0.0107) for individuals with FTD, but not with ALS. Despite considerable somatic instability of the C9orf72 expansion, semi-automated expansion size measurements demonstrated an inverse relationship between C9orf72 expansion size and disease duration in patients with FTD. Our finding suggests that C9orf72 repeat size may be a molecular disease modifier in FTD linked to hexanucleotide repeat expansion.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Expansión de las Repeticiones de ADN , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/fisiopatología , Proteínas/genética , Edad de Inicio , Anciano , Esclerosis Amiotrófica Lateral/sangre , Southern Blotting , Proteína C9orf72 , Estudios de Cohortes , Estudios Transversales , Femenino , Degeneración Lobar Frontotemporal/sangre , Técnicas de Genotipaje , Haplotipos , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Reconocimiento de Normas Patrones Automatizadas , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas/metabolismo , Factores de TiempoRESUMEN
Hypoxia-inducible factors (HIFs) accumulate in both neoplastic and inflammatory cells within the tumor microenvironment and impact the progression of a variety of diseases, including colorectal cancer. Pharmacological HIF inhibition represents a novel therapeutic strategy for cancer treatment. We show here that acriflavine (ACF), a naturally occurring compound known to repress HIF transcriptional activity, halts the progression of an autochthonous model of established colitis-associated colon cancer (CAC) in immunocompetent mice. ACF treatment resulted in decreased tumor number, size and advancement (based on histopathological scoring) of CAC. Moreover, ACF treatment corresponded with decreased macrophage infiltration and vascularity in colorectal tumors. Importantly, ACF treatment inhibited the hypoxic induction of M-CSFR, as well as the expression of the angiogenic factor (vascular endothelial growth factor), a canonical HIF target, with little to no impact on the Nuclear factor-kappa B pathway in bone marrow-derived macrophages. These effects probably explain the observed in vivo phenotypes. Finally, an allograft tumor model further confirmed that ACF treatment inhibits tumor growth through HIF-dependent mechanisms. These results suggest pharmacological HIF inhibition in multiple cell types, including epithelial and innate immune cells, significantly limits tumor growth and progression.