Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 21(1): 65, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197053

RESUMEN

BACKGROUND: Over the past decade, three strategies have reduced severe malaria cases and deaths in endemic regions of Africa, Asia and the Americas, specifically: (1) artemisinin-based combination therapy (ACT); (2) insecticide-treated bed nets (ITNs); and, (3) intermittent preventive treatment with sulfadoxine-pyrimethamine in pregnancy (IPTp). The rationale for this study was to examine communities in Dangassa, Mali where, in 2015, two additional control strategies were implemented: ITN universal coverage and seasonal malaria chemoprevention (SMC) among children under 5 years old. METHODS: This was a prospective study based on a rolling longitudinal cohort of 1401 subjects participating in bi-annual smear surveys for the prevalence of asymptomatic Plasmodium falciparum infection and continuous surveillance for the incidence of human disease (uncomplicated malaria), performed in the years from 2012 to 2020. Entomological collections were performed to examine the intensity of transmission based on pyrethroid spray catches, human landing catches and enzyme-linked immunosorbent assay (ELISA) testing for circumsporozoite antigen. RESULTS: A total of 1401 participants of all ages were enrolled in the study in 2012 after random sampling of households from the community census list. Prevalence of infection was extremely high in Dangassa, varying from 9.5 to 62.8% at the start of the rainy season and from 15.1 to 66.7% at the end of the rainy season. Likewise, the number of vectors per house, biting rates, sporozoites rates, and entomological inoculation rates (EIRs) were substantially greater in Dangassa. DISCUSSION: The findings for this study are consistent with the progressive implementation of effective malaria control strategies in Dangassa. At baseline (2012-2014), prevalence of P. falciparum was above 60% followed by a significant year-to-year decease starting in 2015. Incidence of uncomplicated infection was greater among children < 5 years old, while asymptomatic infection was more frequent among the 5-14 years old. A significant decrease in EIR was also observed from 2015 to 2020. Likewise, vector density, sporozoite rates, and EIRs decreased substantially during the study period. CONCLUSION: Efficient implementation of two main malaria prevention strategies in Dangassa substantially contribute to a reduction of both asymptomatic and symptomatic malaria from 2015 to 2020.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria Falciparum , Malaria , Adolescente , Niño , Preescolar , Humanos , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Estudios Prospectivos
2.
Malar J ; 20(1): 127, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663515

RESUMEN

BACKGROUND: Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. METHODS: Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. RESULTS: A total of 11,237 An. gambiae sensu lato (s.l.) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1-4.3]) and indoor collections were 3.1% (95% BCI [2.4-5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7-6.3]) compared with outdoors at 2.4% (95% BCI [1.1-4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21-19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55-25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34-2.72] ib/p/m and 0.94 [95% BCI 0.43-1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. CONCLUSION: The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.


Asunto(s)
Anopheles/fisiología , Malaria Falciparum/transmisión , Mosquitos Vectores/fisiología , Plasmodium falciparum/aislamiento & purificación , Adulto , Animales , Biodiversidad , Ambiente , Conducta Alimentaria , Femenino , Humanos , Masculino , Malí , Población Rural , Esporozoítos/aislamiento & purificación , Adulto Joven
3.
Malar J ; 20(1): 235, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034754

RESUMEN

BACKGROUND: The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali. METHODS: Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2000-200,000 asexual parasites/µL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42. were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing. RESULTS: A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI 78.5-88.4%) in the AL arm and 93.1% (95% CI 89.7-96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0-95.9%) in the AL arm and 97.1% (93.6-100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common. CONCLUSIONS: The findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Malí
4.
Malar J ; 19(1): 295, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811534

RESUMEN

BACKGROUND: The identification of asymptomatic individuals with Plasmodium falciparum infection is difficult because they do not seek medical treatment and often have too few asexual parasites detectable using microscopy or rapid diagnostic tests (≤ 200 parasites per µl). Quantitative PCR (qPCR) may provide greater sensitivity and permits estimation of the initial template DNA concentration. This study examined the hypothesis that qPCR assays using templates with higher copy numbers may be more sensitive for P. falciparum than assays based on templates with lower copy numbers. METHODS: To test this hypothesis, ten qPCR assays for DNA sequences with template copy numbers from 1 to 160 were compared using parasite DNA standards (n = 2) and smear-positive filter paper blots from asymptomatic smear-positive subjects (n = 96). RESULTS: Based on the testing of P. falciparum parasite DNA standards and filter paper blots, cycle threshold values decreased as the concentrations of template DNA and template copy numbers increased (p < 0.001). Likewise, the analytical and clinical sensitivities of qPCR assays for P. falciparum DNA (based on DNA standards and filter paper blots, respectively) increased with template copy number. Despite the gains in clinical sensitivity from increased template copy numbers, qPCR assays failed to detect more than half of the filter paper blots with low parasite densities (≤ 200 asexual parasites per µl). CONCLUSIONS: These results confirm the hypothesis that the sensitivity of qPCR for P. falciparum in the blood of individuals with asymptomatic infection increases with template copy number. However, because even the most sensitive qPCR assays (with template copy numbers from 32 to 160) detected fewer than 50% of infections with ≤ 200 asexual parasites per µl, the sensitivity of qPCR must be increased further to identify all smear-positive, asymptomatic individuals in order to interrupt transmission.


Asunto(s)
Infecciones Asintomáticas , Variaciones en el Número de Copia de ADN , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adolescente , Niño , Preescolar , ADN Protozoario/análisis , Humanos
5.
Malar J ; 19(1): 33, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964378

RESUMEN

BACKGROUND: Because clustering of Plasmodium falciparum infection had been noted previously, the clustering of infection was examined at four field sites in West Africa: Dangassa and Dioro in Mali, Gambissara in The Gambia and Madina Fall in Senegal. METHODS: Clustering of infection was defined by the percent of persons with positive slides for asexual P. falciparum sleeping in a house which had been geopositioned. Data from each site were then tested for spatial, temporal and spatio-temporal clustering in relation to the prevalence of infection from smear surveys. RESULTS: These studies suggest that clustering of P. falciparum infection also affects the effectiveness of control interventions. For example, the clustering of infection in Madina Fall disappeared in 2014-2016 after vector control eliminated the only breeding site in 2013. In contrast, the temporal clustering of infection in Dioro (rainy season of 2014, dry season of 2015) was consistent with the loss of funding for Dioro in the second quarter of 2014 and disappeared when funds again became available in late 2015. The clustering of infection in rural (western) areas of Gambissara was consistent with known rural-urban differences in the prevalence of infection and with the thatched roofs, open eaves and mud walls of houses in rural Gambissara. In contrast, the most intense transmission was in Dangassa, where the only encouraging observation was a lower prevalence of infection in the dry season. Taken together, these results suggest: (a) the transmission of infection was stopped in Madina Fall by eliminating the only known breeding site, (b) the prevalence of infection was reduced in Dioro after financial support became available again for malaria control in the second half of 2015, (c) improvements in housing should improve malaria control by reducing the number of vectors in rural communities such as western Gambissara, and (d) beginning malaria control during the dry season may reduce transmission in hyperendemic areas such as Dangassa. CONCLUSIONS: From a conceptual perspective, testing for spatial, temporal and spatio-temporal clustering based on epidemiologic data permits the generation of hypotheses for the clustering observed and the testing of candidate interventions to confirm or refute those hypotheses.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Análisis por Conglomerados , Composición Familiar , Gambia/epidemiología , Sistemas de Información Geográfica , Vivienda/normas , Humanos , Malí/epidemiología , Prevalencia , Población Rural , Estaciones del Año , Senegal/epidemiología , Análisis Espacial , Factores de Tiempo , Población Urbana
6.
Malar J ; 16(1): 123, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28320390

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDTs) for histidine rich protein 2 (HRP2) are often used to determine whether persons with fever should be treated with anti-malarials. However, Plasmodium falciparum parasites with a deletion of the hrp2 gene yield false-negative RDTs and there are concerns the sensitivity of HRP2-based RDTs may fall when the intensity of transmission decreases. METHODS: This observational study enrolled 9226 patients at three health centres in Rwanda from April 2014 to April 2015. It then compared the sensitivity of RDTs based on HRP2 and the Plasmodium lactate dehydrogenase (pLDH) to microscopy (thick smears) for the diagnosis of malaria. PCR was used to determine whether deletions of the histidine-rich central repeat region of the hrp2 gene (exon 2) were associated with false-negative HRP2-based RDTs. RESULTS: In comparison to microscopy, the sensitivity and specificity of HRP2- and pLDH-based RDTs were 89.5 and 86.2% and 80.2 and 94.3%, respectively. When the results for both RDTs were combined, sensitivity rose to 91.8% and specificity was 85.7%. Additionally, when smear positivity fell from 46 to 3%, the sensitivity of the HRP2-based RDT fell from 88 to 67%. Of 370 samples with false-negative HRP2 RDT results for which PCR was performed, 140 (38%) were identified as P. falciparum by PCR. Of the isolates identified as P. falciparum by PCR, 32 (23%) were negative for the hrp2 gene based on PCR. Of the 32 P. falciparum isolates negative for hrp2 by PCR, 17 (53%) were positive based on the pLDH RDT. CONCLUSION: This prospective study of RDT performance coincided with a decline in the intensity of malaria transmission in Kibirizi (fall in slide positivity from 46 to 3%). This decline was associated with a decrease in HRP2 RDT sensitivity (from 88 to 67%). While P. falciparum isolates without the hrp2 gene were an important cause of false-negative HRP2-based RDTs, most were identified by the pLDH-based RDT. Although WHO does not recommend the use of combined HRP2/pLDH testing in sub-Saharan Africa, these results suggest that combination HRP2/pLDH-based RDTs could reduce the impact of false-negative HRP2-based RDTs for detection of symptomatic P. falciparum malaria.


Asunto(s)
Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Reacciones Falso Negativas , Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Humanos , Lactante , Malaria Falciparum/transmisión , Persona de Mediana Edad , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Rwanda , Sensibilidad y Especificidad , Adulto Joven
7.
Malar J ; 16(1): 250, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615016

RESUMEN

BACKGROUND: The monitoring of Plasmodium falciparum sensitivity to anti-malarial drugs is a necessity for effective case management of malaria. This species is characterized by a strong resistance to anti-malarial drugs. In Senegal, the first cases of chloroquine resistance were reported in the Dakar region in 1988 with nearly 7% population prevalence, reaching 47% by 1990. It is in this context that sulfadoxine-pyrimethamine temporarily replaced chloroquine as first line treatment in 2003, pending the introduction of artemisinin-based combination therapy in 2006. The purpose of this study is to assess the ex vivo sensitivity to different anti-malarial drugs of the P. falciparum population from Pikine. METHODS: Fifty-four samples were collected from patients with non-complicated malaria and aged between 2 and 20 years in the Deggo health centre in Pikine in 2014. An assay in which parasites are stained with 4', 6-di-amidino-2-phenylindole (DAPI), was used to study the ex vivo sensitivity of isolates to chloroquine, amodiaquine, piperaquine, pyrimethamine, and dihydroartemisinin. High resolution melting was used for genotyping of pfdhps, pfdhfr, pfmdr1, and pfcrt genes. RESULTS: The mean IC50s of chloroquine, amodiaquine, piperaquine, dihydroartemisinin, and pyrimethamine were, respectively, 39.44, 54.02, 15.28, 2.23, and 64.70 nM. Resistance mutations in pfdhfr gene, in codon 437 of pfdhps gene, and an absence of mutation at position 540 of pfdhps were observed. Mutations in codons K76T of pfcrt and N86Y of pfmdr1 were observed at 51 and 11% population prevalence, respectively. A relationship was found between the K76T and N86Y mutations and ex vivo resistance to chloroquine. CONCLUSION: An increase in sensitivity of isolates to chloroquine was observed. A high sensitivity to dihydroartemisinin was observed; whereas, a decrease in sensitivity to pyrimethamine was observed in the parasite population from Pikine.


Asunto(s)
Antimaláricos/farmacología , Malaria/parasitología , Plasmodium falciparum/efectos de los fármacos , Adolescente , Amodiaquina/farmacología , Artemisininas/farmacología , Niño , Preescolar , Cloroquina/farmacología , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Resistencia a Medicamentos/genética , Colorantes Fluorescentes , Genotipo , Técnicas de Genotipaje , Humanos , Indoles , Concentración 50 Inhibidora , Mutación , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Pirimetamina/farmacología , Quinolinas/farmacología , Senegal , Adulto Joven
8.
Malar J ; 15(1): 433, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27562216

RESUMEN

BACKGROUND: The use of artemisinin as a monotherapy resulted in the emergence of artemisinin resistance in 2005 in Southeast Asia. Monitoring of artemisinin combination therapy (ACT) is critical in order to detect and prevent the spread of resistance in endemic areas. Ex vivo studies and genotyping of molecular markers of resistance can be used as part of this routine monitoring strategy. One gene that has been associated in some ACT partner drug resistance is the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene. The purpose of this study was to assess the drug susceptibility of P. falciparum populations from Thiès, Senegal by ex vivo assay and typing molecular markers of resistance to drug components of ACT currently used for treatment. METHODS: The ex vivo susceptibility of 170 P. falciparum isolates to chloroquine, amodiaquine, lumefantrine, artesunate, and artemether was determined using the DAPI ex vivo assay. The high resolution melting technique was used to genotype the pfmdr1 gene at codons 86, 184 and 1246. RESULTS: A significant decrease in IC50 values was observed between 2012 and 2013: from 13.84 to 6.484 for amodiaquine, 173.4 to 113.2 for lumefantrine, and 39.72 to 18.29 for chloroquine, respectively. Increase of the wild haplotype NYD and the decrease of the mutant haplotype NFD (79 and 62.26 %) was also observed. A correlation was observed between the wild type allele Y184 in pfmdr1 and higher IC50 for all drugs, except amodiaquine. CONCLUSION: This study has shown an increase in sensitivity over the span of two transmission seasons, marked by an increase in the WT alleles at pfmdr1. Continuous the monitoring of the ACT used for treatment of uncomplicated malaria will be helpful.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Etanolaminas/farmacología , Fluorenos/farmacología , Frecuencia de los Genes , Haplotipos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Selección Genética , Adolescente , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina , Artemisininas/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Etanolaminas/uso terapéutico , Femenino , Fluorenos/uso terapéutico , Genética de Población , Técnicas de Genotipaje , Humanos , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Senegal , Adulto Joven
9.
Malar J ; 14: 415, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26492968

RESUMEN

BACKGROUND: Although the epidemiology of malaria has been based primarily on microscopy and rapid diagnostic tests, molecular methods are necessary to understand the complexity of natural infection in regions where transmission is intense and simultaneous infection with multiple parasite genotypes is common such as sub-Saharan Africa. METHODS: To compare microscopic and molecular estimates of the incidence and clearance of Plasmodium falciparum infection, we followed 80 children monthly for 1 year in the village of Bancoumana in Mali. RESULTS AND DISCUSSION: Similar seasonal patterns were observed with both methods (rainy season peak, dry season nadir), although molecular methods detected more infections than microscopy (571 vs 331 in 906 specimens), more new infections (311 vs 104 during 829 person-months) and spontaneous clearance events (317 vs 116) and found higher incidence (0.38 vs 0.13 new genotypes/person/month, p < 0.001) and spontaneous clearance rates (0.38 vs 0.14 genotypes cleared/person/month, p < 0.001). These differences were greatest for persistently-infected subjects in whom neither new infections nor the clearance of old infections could be detected by microscopy (0.71 new infections and 0.73 cleared infections per month using molecular methods vs 0.000 by microscopy, p < 0.001). CONCLUSIONS: Molecular methods provide information about genetic diversity, the intensity of transmission and spontaneous clearance in the absence of drug treatment that cannot be obtained by microscopy. They will be necessary to evaluate the efficacy of vaccines, drugs and other control strategies for diseases such as malaria in which simultaneous infection with more than one organism (genotype) is common.


Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Microscopía/métodos , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/aislamiento & purificación , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Masculino , Malí/epidemiología , Epidemiología Molecular , Plasmodium falciparum/genética , Estudios Prospectivos
11.
Malar J ; 12: 335, 2013 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-24053719

RESUMEN

BACKGROUND: Recent developments in diagnostic techniques for malaria, particularly DNA probes and sero-immunology, have raised questions as to how these techniques might be used to facilitate malaria diagnosis at the most peripheral levels of the primary health care system. At present, malaria diagnosis is based on the standard microscopic examination of blood films in most field epidemiologic studies and is likely to remain so in the immediate future in Africa. The objective of this study was to assess inter-observer agreement for the examination of Giemsa-stained slides for Plasmodium falciparum parasites. METHODS: Children aged 0 to 10 years were enrolled yearly in Bancoumana village (West Africa), mainly during the transmission season (June to October). The blood smears obtained from the persistently negative children in June 1996, August 1996, October 1996 and March 1997 were systematically re-examined. A stratified random sample (10%) proportional to the following parasite density classes 1-100, 101-5000, and 5001 and over was taken from the slides collected. The kappa statistics and the intra-class correlation were used as measures of agreement the first and the second slide examinations. RESULTS: The weighted kappa statistic, widely used as a chance-corrected measure for nominal agreement, showed excellent inter-observer agreement (κ(w)=0.7926; 95% CI [0.7588, 0.8263]; p=0.01). The intra-class correlation co-efficient had the same value of 0.7926 confirming the appropriateness of the weighted kappa statistic. Inter-observer agreement for slides read as negative by one observer, or as containing more than 100 parasites per µl, was excellent: 97% (493/506) and 92% (145/158), respectively. In contrast, the inter-observer agreement for slides read by one observer as containing 1-100 parasites/µl was poor, 36% (96/268). CONCLUSIONS: In field conditions in Mali, there was a high reproducibility for slides reported as negative or as having more than 100 parasites per µl. However, smears with readings of 1-100 parasites per µl were less reproducible and should be re-examined carefully.


Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Microscopía/normas , Variaciones Dependientes del Observador , Carga de Parásitos/normas , Parasitemia/diagnóstico , Parasitemia/parasitología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Malí , Microscopía/métodos , Carga de Parásitos/métodos , Reproducibilidad de los Resultados
12.
Am J Epidemiol ; 176 Suppl 7: S175-85, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23035141

RESUMEN

Although sickle cell trait protects against severe disease due to Plasmodium falciparum, it has not been clear whether sickle trait also protects against asymptomatic infection (parasitemia). To address this question, the authors identified 171 persistently smear-negative children and 450 asymptomatic persistently smear-positive children in Bancoumana, Mali (June 1996 to June 1998). They then followed both groups for 2 years using a cohort-based strategy. Among the 171 children with persistently negative smears, the median time for conversion to smear-positive was longer for children with sickle trait than for children without (274 vs. 108 days, P < 0.001; Cox hazard ratio = 0.56, 95% confidence interval: 0.33, 0.96; P = 0.036). Similar differences were found in the median times to reinfection after spontaneous clearance without treatment (365 days vs. 184 days; P = 0.01). Alternatively, among the 450 asymptomatic children with persistently positive smears, the median time for conversion to smear-negative (spontaneous clearance) was shorter for children with sickle trait than for children without (190 vs. 365 days; P = 0.02). These protective effects of sickle trait against asymptomatic P. falciparum infection under conditions of natural transmission were demonstrable using a cohort-based approach but not when the same data were examined using a cross-sectional approach.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Malaria Falciparum/genética , Rasgo Drepanocítico/genética , Factores de Edad , Antimaláricos/uso terapéutico , Enfermedades Asintomáticas , Niño , Preescolar , Estudios Transversales , Humanos , Lactante , Modelos Logísticos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malí/epidemiología , Oportunidad Relativa , Parasitemia/epidemiología , Parasitemia/genética , Plasmodium falciparum , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Rasgo Drepanocítico/parasitología
13.
Antimicrob Agents Chemother ; 55(5): 2233-44, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21383099

RESUMEN

Chloroquine (CQ) is a safe and economical 4-aminoquinoline (AQ) antimalarial. However, its value has been severely compromised by the increasing prevalence of CQ resistance. This study examined 108 AQs, including 68 newly synthesized compounds. Of these 108 AQs, 32 (30%) were active only against CQ-susceptible Plasmodium falciparum strains and 59 (55%) were active against both CQ-susceptible and CQ-resistant P. falciparum strains (50% inhibitory concentrations [IC50s], ≤25 nM). All AQs active against both CQ-susceptible and CQ-resistant P. falciparum strains shared four structural features: (i) an AQ ring without alkyl substitution, (ii) a halogen at position 7 (Cl, Br, or I but not F), (iii) a protonatable nitrogen at position 1, and (iv) a second protonatable nitrogen at the end of the side chain distal from the point of attachment to the AQ ring via the nitrogen at position 4. For activity against CQ-resistant parasites, side chain lengths of ≤3 or ≥10 carbons were necessary but not sufficient; they were identified as essential factors by visual comparison of 2-dimensional (2-D) structures in relation to the antiparasite activities of the AQs and were confirmed by computer-based 3-D comparisons and differential contour plots of activity against P. falciparum. The advantage of the method reported here (refinement of quantitative structure-activity relationship [QSAR] descriptors by random assignment of compounds to multiple training and test sets) is that it retains QSAR descriptors according to their abilities to predict the activities of unknown test compounds rather than according to how well they fit the activities of the compounds in the training sets.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Aminoquinolinas/química , Cloroquina/química , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa
14.
J Infect Dis ; 202(5): 791-800, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20662718

RESUMEN

BACKGROUND: Chronic intravascular hemolysis leads to nitric oxide (NO) depletion and pulmonary hypertension in sickle cell disease. To test whether this pathophysiology occurs in malaria, we examined in Mali 53 children who were admitted to the hospital with severe malaria (excluding cerebral malaria) and 31 age-matched controls. METHODS: Severity of hemolysis was assessed from plasma levels of free hemoglobin and arginase-1. NO metabolism was assessed by whole-blood nitrite levels and plasma NO consumption. Effects on the cardiovascular system and endothelial function were assessed by using echocardiography to measure peak tricuspid regurgitant jet velocity and by evaluating plasma levels of N-terminal prohormone brain natriuretic peptide (NT-proBNP) and soluble vascular cell adhesion molecule-1. RESULTS: Children with severe malaria had higher plasma levels of hemoglobin and arginase-1, reduced whole-blood levels of nitrite, and increased NO consumption relative to controls. They also had increased pulmonary arterial pressures (P< .05) with elevated levels of NT-proBNP and soluble vascular cell adhesion molecule-1 (P< .001). CONCLUSION: Children with severe malaria have increased pulmonary pressures and myocardial wall stress. These complications are consistent with NO depletion from intravascular hemolysis, and they indicate that the pathophysiologic cascade from intravascular hemolysis to NO depletion and its cardiopulmonary effects is activated in children with severe malaria.


Asunto(s)
Hipertensión Pulmonar/etiología , Malaria/complicaciones , Malaria/fisiopatología , Índice de Severidad de la Enfermedad , Insuficiencia de la Válvula Tricúspide/etiología , Arginasa/sangre , Estudios de Casos y Controles , Preescolar , Ecocardiografía , Femenino , Hemoglobinas/análisis , Hemólisis , Humanos , Masculino , Miocardio/metabolismo , Óxido Nítrico/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-32878174

RESUMEN

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012-2017) from 1400 persons who sought treatment at Dangassa's community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.


Asunto(s)
Malaria , Modelos Estadísticos , Brotes de Enfermedades , Predicción , Humanos , Humedad , Incidencia , Malaria/epidemiología , Malaria/transmisión , Malí/epidemiología , Lluvia , Temperatura
16.
Emerg Infect Dis ; 15(5): 735-40, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19402959

RESUMEN

Plasmodium falciparum parasites have been endemic to Haiti for >40 years without evidence of chloroquine (CQ) resistance. In 2006 and 2007, we obtained blood smears for rapid diagnostic tests (RDTs) and filter paper blots of blood from 821 persons by passive and active case detection. P. falciparum infections diagnosed for 79 persons by blood smear or RDT were confirmed by PCR for the small subunit rRNA gene of P. falciparum. Amplification of the P. falciparum CQ resistance transporter (pfcrt) gene yielded 10 samples with amplicons resistant to cleavage by ApoI. A total of 5 of 9 samples had threonine at position 76 of pfcrt, which is consistent with CQ resistance (haplotypes at positions 72-76 were CVIET [n = 4] and CVMNT [n = 1]); 4 had only the wild-type haplotype associated with CQ susceptibility (CVMNK). These results indicate that CQ-resistant haplotype P. falciparum malaria parasites are present in Haiti.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Haplotipos , Malaria Falciparum/epidemiología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Femenino , Haití/epidemiología , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa , Adulto Joven
17.
Front Genet ; 10: 331, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031807

RESUMEN

Bioinformatics and data science research have boundless potential across Africa due to its high levels of genetic diversity and disproportionate burden of infectious diseases, including malaria, tuberculosis, HIV and AIDS, Ebola virus disease, and Lassa fever. This work lays out an incremental approach for reaching underserved countries in bioinformatics and data science research through a progression of capacity building, training, and research efforts. Two global health informatics training programs sponsored by the Fogarty International Center (FIC) were carried out at the University of Sciences, Techniques and Technologies of Bamako, Mali (USTTB) between 1999 and 2011. Together with capacity building efforts through the West Africa International Centers of Excellence in Malaria Research (ICEMR), this progress laid the groundwork for a bioinformatics and data science training program launched at USTTB as part of the Human Heredity and Health in Africa (H3Africa) initiative. Prior to the global health informatics training, its trainees published first or second authorship and third or higher authorship manuscripts at rates of 0.40 and 0.10 per year, respectively. Following the training, these rates increased to 0.70 and 1.23 per year, respectively, which was a statistically significant increase (p < 0.001). The bioinformatics and data science training program at USTTB commenced in 2017 focusing on student, faculty, and curriculum tiers of enhancement. The program's sustainable measures included institutional support for core elements, university tuition and fees, resource sharing and coordination with local research projects and companion training programs, increased student and faculty publication rates, and increased research proposal submissions. Challenges reliance of high-speed bandwidth availability on short-term funding, lack of a discounted software portal for basic software applications, protracted application processes for United States visas, lack of industry job positions, and low publication rates in the areas of bioinformatics and data science. Long-term, incremental processes are necessary for engaging historically underserved countries in bioinformatics and data science research. The multi-tiered enhancement approach laid out here provides a platform for generating bioinformatics and data science technicians, teachers, researchers, and program managers. Increased literature on bioinformatics and data science training approaches and progress is needed to provide a framework for establishing benchmarks on the topics.

18.
Infect Dis Poverty ; 7(1): 125, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30541626

RESUMEN

BACKGROUND: Developing and sustaining a data collection and management system (DCMS) is difficult in malaria-endemic countries because of limitations in internet bandwidth, computer resources and numbers of trained personnel. The premise of this paper is that development of a DCMS in West Africa was a critically important outcome of the West African International Centers of Excellence for Malaria Research. The purposes of this paper are to make that information available to other investigators and to encourage the linkage of DCMSs to international research and Ministry of Health data systems and repositories. METHODS: We designed and implemented a DCMS to link study sites in Mali, Senegal and The Gambia. This system was based on case report forms for epidemiologic, entomologic, clinical and laboratory aspects of plasmodial infection and malarial disease for a longitudinal cohort study and included on-site training for Principal Investigators and Data Managers. Based on this experience, we propose guidelines for the design and sustainability of DCMSs in environments with limited resources and personnel. RESULTS: From 2012 to 2017, we performed biannual thick smear surveys for plasmodial infection, mosquito collections for anopheline biting rates and sporozoite rates and year-round passive case detection for malarial disease in four longitudinal cohorts with 7708 individuals and 918 households in Senegal, The Gambia and Mali. Major challenges included the development of uniform definitions and reporting, assessment of data entry error rates, unstable and limited internet access and software and technology maintenance. Strengths included entomologic collections linked to longitudinal cohort studies, on-site data centres and a cloud-based data repository. CONCLUSIONS: At a time when research on diseases of poverty in low and middle-income countries is a global priority, the resources available to ensure accurate data collection and the electronic availability of those data remain severely limited. Based on our experience, we suggest the development of a regional DCMS. This approach is more economical than separate data centres and has the potential to improve data quality by encouraging shared case definitions, data validation strategies and analytic approaches including the molecular analysis of treatment successes and failures.


Asunto(s)
Gestión de la Información/métodos , Gestión de la Información/normas , Malaria/epidemiología , Animales , Culicidae/parasitología , Recolección de Datos , Gambia , Humanos , Malí , Senegal , Encuestas y Cuestionarios
19.
Emerg Infect Dis ; 13(10): 1494-6, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18257993

RESUMEN

We conducted a population-based survey to estimate the prevalence of Plasmodium falciparum infection among persons older than 1 month in the Artibonite Valley of Haiti during the high malaria transmission season in 2006. Results from PCR for 714 persons showed a prevalence of 3.1% for P. falciparum infection.


Asunto(s)
Enfermedades Endémicas/estadística & datos numéricos , Malaria Falciparum/epidemiología , Lluvia , Adolescente , Adulto , Niño , Preescolar , Análisis por Conglomerados , Femenino , Haití/epidemiología , Humanos , Lactante , Malaria Falciparum/transmisión , Masculino , Persona de Mediana Edad , Estaciones del Año
20.
Am J Trop Med Hyg ; 77(3): 451-7, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17827359

RESUMEN

The Amazon region of Iquitos, Peru is hypoendemic for Plasmodium vivax and P. falciparum. There is limited information regarding the epidemiology of malaria during pregnancy in this region. Passive surveillance for clinical malaria among pregnant women was conducted in eight health posts in 2004 and 2005. Community-based active surveillance was conducted to determine the incidence of malarial infection among pregnant women in the community of Zungarococha in 2004 and 2005. Passive surveillance demonstrated that pregnant women had a prevalence of clinical malaria of 7.5% in 2004 and 6.6% in 2005 compared with 20.6% and 22.4% of the total population. Active surveillance showed that pregnant women were 2.3 (95% confidence interval = 1.32-3.95, P = 0.004) times more likely to have a P. falciparum infection compared with non-pregnant women. This study demonstrated that because of detection bias, passive surveillance underestimates the burden of malarial infection during pregnancy, and that subclinical malarial infections may occur frequently among pregnant women in this region. Furthermore, pregnant women in this low-transmission and P. vivax-dominant setting, experience an increased risk for P. falciparum infection, but not P. vivax infection.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Complicaciones Parasitarias del Embarazo/epidemiología , Adolescente , Adulto , Animales , Enfermedades Endémicas , Femenino , Humanos , Persona de Mediana Edad , Perú/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Embarazo , Prevalencia , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA