Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 102(2): 370-381, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618095

RESUMEN

This study applies a large proteomics panel to search for new circulating biomarkers associated with progression to kidney failure in individuals with diabetic kidney disease. Four independent cohorts encompassing 754 individuals with type 1 and type 2 diabetes and early and late diabetic kidney disease were followed to ascertain progression to kidney failure. During ten years of follow-up, 227 of 754 individuals progressed to kidney failure. Using the SOMAscan proteomics platform, we measured baseline concentration of 1129 circulating proteins. In our previous publications, we analyzed 334 of these proteins that were members of specific candidate pathways involved in diabetic kidney disease and found 35 proteins strongly associated with risk of progression to kidney failure. Here, we examined the remaining 795 proteins using an untargeted approach. Of these remaining proteins, 11 were significantly associated with progression to kidney failure. Biological processes previously reported for these proteins were related to neuron development (DLL1, MATN2, NRX1B, KLK8, RTN4R and ROR1) and were implicated in the development of kidney fibrosis (LAYN, DLL1, MAPK11, MATN2, endostatin, and ROR1) in cellular and animal studies. Specific mechanisms that underlie involvement of these proteins in progression of diabetic kidney disease must be further investigated to assess their value as targets for kidney-protective therapies. Using multivariable LASSO regression analysis, five proteins (LAYN, ESAM, DLL1, MAPK11 and endostatin) were found independently associated with risk of progression to kidney failure. Thus, our study identified proteins that may be considered as new candidate prognostic biomarkers to predict risk of progression to kidney failure in diabetic kidney disease. Furthermore, three of these proteins (DLL1, ESAM, and MAPK11) were selected as candidate biomarkers when all SOMAscan results were evaluated.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Insuficiencia Renal , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Endostatinas , Humanos , Lectinas Tipo C , Proteómica/métodos
2.
J Am Soc Nephrol ; 32(9): 2331-2351, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34140396

RESUMEN

BACKGROUND: Mechanisms underlying the pro gression of diabetic kidney disease to ESKD are not fully understood. METHODS: We performed global microRNA (miRNA) analysis on plasma from two cohorts consisting of 375 individuals with type 1 and type 2 diabetes with late diabetic kidney disease, and targeted proteomics analysis on plasma from four cohorts consisting of 746 individuals with late and early diabetic kidney disease. We examined structural lesions in kidney biopsy specimens from the 105 individuals with early diabetic kidney disease. Human umbilical vein endothelial cells were used to assess the effects of miRNA mimics or inhibitors on regulation of candidate proteins. RESULTS: In the late diabetic kidney disease cohorts, we identified 17 circulating miRNAs, represented by four exemplars (miR-1287-5p, miR-197-5p, miR-339-5p, and miR-328-3p), that were strongly associated with 10-year risk of ESKD. These miRNAs targeted proteins in the axon guidance pathway. Circulating levels of six of these proteins-most notably, EFNA4 and EPHA2-were strongly associated with 10-year risk of ESKD in all cohorts. Furthermore, circulating levels of these proteins correlated with severity of structural lesions in kidney biopsy specimens. In contrast, expression levels of genes encoding these proteins had no apparent effects on the lesions. In in vitro experiments, mimics of miR-1287-5p and miR-197-5p and inhibitors of miR-339-5p and miR-328-3p upregulated concentrations of EPHA2 in either cell lysate, supernatant, or both. CONCLUSIONS: This study reveals novel mechanisms involved in progression to ESKD and points to the importance of systemic factors in the development of diabetic kidney disease. Some circulating miRNAs and axon guidance pathway proteins represent potential targets for new therapies to prevent and treat this condition.


Asunto(s)
Orientación del Axón/fisiología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 2/sangre , Nefropatías Diabéticas/etiología , Fallo Renal Crónico/etiología , MicroARNs/sangre , Adulto , Estudios de Cohortes , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/sangre , Femenino , Humanos , Fallo Renal Crónico/sangre , Masculino , Persona de Mediana Edad
3.
J Am Soc Nephrol ; 32(10): 2634-2651, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34261756

RESUMEN

BACKGROUND: Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. METHODS: Gene-based exome array analyses of 15,449 genes in five large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time to ESKD, testing the top gene in a sixth cohort (n=2372/1115 events all cohorts) and replicating in two retrospective case-control studies (n=1072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS: Protein coding variants in the hydroxysteroid 17-ß dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n=4196; P value=3.3 × 10-7). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. CONCLUSIONS: HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Nefropatías Diabéticas/genética , Fallo Renal Crónico/genética , Adulto , Animales , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/metabolismo , Progresión de la Enfermedad , Exoma , Femenino , Expresión Génica , Variación Genética , Humanos , Fallo Renal Crónico/etiología , Fallo Renal Crónico/metabolismo , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Persona de Mediana Edad , Elementos Estructurales de las Proteínas/genética , Daño por Reperfusión/complicaciones , Estudios Retrospectivos , Tasa de Supervivencia
4.
Kidney Int ; 99(3): 725-736, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32717193

RESUMEN

This study comprehensively evaluated the association between known circulating tumor necrosis factor (TNF) superfamily ligands and receptors and the development of early progressive kidney decline (PKD) leading to end-stage kidney disease (ESKD) in Type 1 diabetes. Participants for the study were from the Macro-Albuminuria Study (198 individuals), and the Micro-Albuminuria Study (148 individuals) of the Joslin Kidney Study. All individuals initially had normal kidney function and were followed for seven-fifteen years to determine the slope of the estimate glomerular filtration rate and to ascertain onset of ESKD. Plasma concentrations of 25 TNF superfamily proteins were measured using proximity extension assay applied in the OLINK proteomics platform. In the both studies risk of early PKD, determined as estimated glomerular filtration rate loss greater than or equal to three ml/min/1.73m2/year, was associated with elevated circulating levels of 13 of 19 TNF receptors examined. In the Macro-Albuminuria Study, we obtained similar findings for risk of progression to ESKD. These receptors comprised: TNF-R1A, -R1B, -R3, -R4, -R6, -R6B, -R7, -R10A, -R10B, -R11A, -R14, -R21, and -R27. Serial measurements showed that circulating levels of these TNF receptors had increased before the onset of PKD. In contrast, none of the six measured TNF ligands showed association with risk of early PKD. Of significance, the disease process that underlies PKD leading to ESKD in Type 1 diabetes has a profile also seen in autoimmune disorders. The mechanisms of this enrichment may be causally related to the development of PKD in Type 1 diabetes and must be investigated further. Thus, some of these receptors may be used as new risk predictors of ESKD.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Albuminuria , Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Humanos , Riñón , Receptores del Factor de Necrosis Tumoral , Factores de Riesgo
5.
Kidney Int ; 93(5): 1198-1206, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29398132

RESUMEN

To identify determinants of early progressive renal decline in type 2 diabetes a range of markers was studied in 1032 patients enrolled into the 2nd Joslin Kidney Study. eGFR slopes estimated from serial measurements of serum creatinine during 5-12 years of follow-up were used to define early renal decline. At enrollment, all patients had normal eGFR, 58% had normoalbuminuria and 42% had albuminuria. Early renal decline developed in 6% and in 18% patients, respectively. As determinants, we examined baseline values of clinical characteristics, circulating markers: TNFR1, KIM-1, and FGF23, and urinary markers: albumin, KIM-1, NGAL, MCP-1, EGF (all normalized to urinary creatinine) and the ratio of EGF to MCP-1. In univariate analysis, all plasma and urinary markers were significantly associated with risk of early renal decline. When analyzed together, systolic blood pressure, TNFR1, KIM-1, the albumin to creatinine ratio, and the EGF/MCP-1 ratio remained significant with the latter having the strongest effect. Integration of these markers into a multi-marker prognostic test resulted in a significant improvement of discriminatory performance of risk prediction of early renal decline, compared with the albumin to creatinine ratio and systolic blood pressure alone. However, the positive predictive value was only 50% in albuminuric patients. Thus, markers in plasma and urine indicate that the early progressive renal decline in Type 2 diabetes has multiple determinants with strong evidence for involvement of tubular damage. However, new, more informative markers are needed to develop a better prognostic test for such decline that can be used in a clinical setting.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatías Diabéticas/etiología , Adulto , Albuminuria/diagnóstico , Albuminuria/etiología , Albuminuria/fisiopatología , Biomarcadores/sangre , Biomarcadores/orina , Presión Sanguínea , Quimiocina CCL2/orina , Creatinina/orina , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/orina , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Diagnóstico Precoz , Factor de Crecimiento Epidérmico/orina , Femenino , Factor-23 de Crecimiento de Fibroblastos , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Humanos , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
6.
Kidney Int ; 91(6): 1300-1311, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366227

RESUMEN

A new model of diabetic nephropathy in type 1 diabetes emerged from our studies of Joslin Clinic patients. The dominant feature is progressive renal decline, not albuminuria. This decline is a unidirectional process commencing while patients have normal renal function and, in the majority, progressing steadily (linearly) to end-stage renal disease (ESRD). While an individual's rate of renal decline is constant, the estimated glomerular filtration rate (eGFR) slope varies widely among individuals from -72 to -3.0 ml/min/year. Kidney Disease: Improving Global Outcomes guidelines define rapid progression as rate of eGFR declines > 5 ml/min/year, a value exceeded by 80% of patients in Joslin's type 1 diabetes ESRD cohort. The extraordinary range of slopes within the rapid progression category prompted us to partition it into "very fast," "fast" and "moderate" decline. We showed, for the first time, that very fast and fast decline from normal eGFR to ESRD within 2 to 10 years constitutes 50% of the Joslin cohort. In this review we present data about frequency of fast decliners in both diabetes types, survey some mechanisms underlying fast renal decline, discuss methods of identifying patients at risk and comment on the need for effective therapeutic interventions. Whether the initiating mechanism of fast renal decline affects glomerulus, tubule, interstitium or vasculature is unknown. Since no animal model mimics progressive renal decline, studies in humans are needed. Prospective studies searching for markers predictive of the rate of renal decline yield findings that may make detection of fast decliners feasible. Identifying such patients will be the foundation for developing effective individualized methods to prevent or delay onset of ESRD in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/etiología , Fallo Renal Crónico/etiología , Riñón/fisiopatología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Albuminuria/etiología , Albuminuria/fisiopatología , Diabetes Mellitus Tipo 1/diagnóstico , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/fisiopatología , Modelos Lineales , Modelos Biológicos , Pronóstico , Factores de Riesgo , Factores de Tiempo
7.
Kidney Int ; 92(1): 258-266, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28396115

RESUMEN

Design of Phase III trials for diabetic nephropathy currently requires patients at a high risk of progression defined as within three years of a hard end point (end-stage renal disease, 40% loss of estimated glomerular filtration rate, or death). To improve the design of these trials, we used natural history data from the Joslin Kidney Studies of chronic kidney disease in patients with diabetes to develop an improved criterion to identify such patients. This included a training cohort of 279 patients with type 1 diabetes and 134 end points within three years, and a validation cohort of 221 patients with type 2 diabetes and 88 end points. Previous trials selected patients using clinical criteria for baseline urinary albumin-to-creatinine ratio and estimated glomerular filtration rate. Application of these criteria to our cohort data yielded sensitivities (detection of patients at risk) of 70-80% and prognostic values of only 52-63%. We applied classification and regression trees analysis to select from among all clinical characteristics and markers the optimal prognostic criterion that divided patients with type 1 diabetes according to risk. The optimal criterion was a serum tumor necrosis factor receptor 1 level over 4.3 ng/ml alone or 2.9-4.3 ng/ml with an albumin-to-creatinine ratio over 1900 mg/g. Remarkably, this criterion produced similar results in both type 1 and type 2 diabetic patients. Overall, sensitivity and prognostic value were high (72% and 81%, respectively). Thus, application of this criterion to enrollment in future clinical trials could reduce the sample size required to achieve adequate statistical power for detection of treatment benefits.


Asunto(s)
Ensayos Clínicos Fase III como Asunto/métodos , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Determinación de Punto Final , Tasa de Filtración Glomerular , Fallo Renal Crónico/etiología , Riñón/fisiopatología , Selección de Paciente , Adulto , Albuminuria/etiología , Albuminuria/fisiopatología , Biomarcadores/sangre , Biomarcadores/orina , Creatinina/orina , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/terapia , Progresión de la Enfermedad , Femenino , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/fisiopatología , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
8.
Kidney Int ; 89(2): 459-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26509588

RESUMEN

Progressively decreasing glomerular filtration rate (GFR), or renal decline, is seen in patients with type 1 diabetes (T1D) and normoalbuminuria or microalbuminuria. Here we examined the associations of kidney injury molecule-1 (KIM-1) in plasma and urine with the risk of renal decline and determine whether those associations are independent of markers of glomerular damage. The study group comprised patients with T1D from the 2nd Joslin Kidney Study of which 259 had normoalbuminuria and 203 had microalbuminuria. Serial measurements over 4 to 10 years of follow-up (median 8 years) of serum creatinine and cystatin C were used jointly to estimate eGFRcr-cys slopes and time of onset of CKD stage 3 or higher. Baseline urinary excretion of IgG2 and albumin were used as markers of glomerular damage, and urinary excretion of KIM-1 and its plasma concentration were used as markers of proximal tubular damage. All patients had normal renal function at baseline. During follow-up, renal decline (eGFRcr-cys loss 3.3% or more per year) developed in 96 patients and 62 progressed to CKD stage 3. For both outcomes, the risk rose with increasing baseline levels of plasma KIM-1. In multivariable models, elevated baseline plasma KIM-1 was strongly associated with risk of early progressive renal decline, regardless of baseline clinical characteristics, serum TNFR1 or markers of glomerular damage. Thus, damage to proximal tubules may play an independent role in the development of early progressive renal decline in non-proteinuric patients with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/orina , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Riñón/fisiopatología , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/fisiopatología , Progresión de la Enfermedad , Humanos , Pruebas de Función Renal , Persona de Mediana Edad
9.
Kidney Int ; 89(1): 226-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26398493

RESUMEN

Elevated serum tumor necrosis factor receptor 1 (TNFR1) and 2 (TNFR2) concentrations are strongly associated with increased risk of end-stage renal disease in type 2 diabetes. However, little is known about the early glomerular structural lesions that develop in patients when these markers are elevated. Here, we examined the relationships between TNFRs and glomerular structure in 83 American Indians with type 2 diabetes. Serum TNFRs and glomerular filtration rate (GFR, iothalamate) were measured during a research exam performed within a median of 0.9 months from a percutaneous kidney biopsy. Associations of TNFRs with glomerular structural variables were quantified by Spearman's correlations and by multivariable linear regression after adjustment for age, gender, diabetes duration, hemoglobin A1c, body mass index, and mean arterial pressure. The baseline mean age was 46 years, median GFR 130 ml/min, median albumin/creatinine ratio 26 mg/g, median TNFR1 1500 pg/ml, and median TNFR2 3284 pg/ml. After multivariable adjustment, TNFR1 and TNFR2 significantly correlated inversely with the percentage of endothelial cell fenestration and the total filtration surface per glomerulus. There were significant positive correlations with mesangial fractional volume, glomerular basement membrane width, podocyte foot process width, and percentage of global glomerular sclerosis. Thus, TNFRs may be involved in the pathogenesis of early glomerular lesions in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/sangre , Glomérulos Renales/patología , Receptores Tipo II del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Adulto , Biomarcadores/sangre , Células Endoteliales/patología , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad
10.
Kidney Int ; 87(4): 812-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25272234

RESUMEN

In Caucasians with type 2 diabetes, circulating TNF receptors 1 (TNFR1) and 2 (TNFR2) predict end-stage renal disease (ESRD). Here we examined this relationship in a longitudinal cohort study of American Indians with type 2 diabetes with measured glomerular filtration rate (mGFR, iothalamate) and urinary albumin-to-creatinine ratio (ACR). ESRD was defined as dialysis, kidney transplant, or death attributed to diabetic kidney disease. Age-gender-adjusted incidence rates and incidence rate ratios of ESRD were computed by Mantel-Haenszel stratification. The hazard ratio of ESRD was assessed per interquartile range increase in the distribution of each TNFR after adjusting for baseline age, gender, mean blood pressure, HbA1c, ACR, and mGFR. Among the 193 participants, 62 developed ESRD and 25 died without ESRD during a median follow-up of 9.5 years. The age-gender-adjusted incidence rate ratio of ESRD was higher among participants in the highest versus lowest quartile for TNFR1 (6.6, 95% confidence interval (CI) 3.3-13.3) or TNFR2 (8.8, 95% CI 4.3-18.0). In the fully adjusted model, the risk of ESRD per interquartile range increase was 1.6 times (95% CI 1.1-2.2) as high for TNFR1 and 1.7 times (95% CI 1.2-2.3) as high for TNFR2. Thus, elevated serum concentrations of TNFR1 or TNFR2 are associated with increased risk of ESRD in American Indians with type 2 diabetes after accounting for traditional risk factors including ACR and mGFR.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Indígenas Norteamericanos/estadística & datos numéricos , Fallo Renal Crónico/sangre , Fallo Renal Crónico/etnología , Receptores Tipo II del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Adulto , Albuminuria/orina , Creatinina/orina , Diabetes Mellitus Tipo 2/etnología , Femenino , Tasa de Filtración Glomerular , Humanos , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiología
11.
J Am Soc Nephrol ; 25(12): 2916-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24904086

RESUMEN

Most patients with type 1 diabetes (T1D) and proteinuria have poor glycemic control and a high risk of ESRD. We investigated whether long-term improvement of glycemic control reduces risk of ESRD in a prospective 7- to 15-year follow-up observation of 349 patients with CKD stages 1-3 enrolled in the Joslin Proteinuria Cohort of adults with T1D. All patients developed proteinuria between 1990 and 2004 and were followed until 2011 to ascertain onset of ESRD and deaths unrelated to ESRD. Furthermore, we analyzed data from 279 patients with ≥3 years of clinic follow-up available to assess the level of glycemic control after enrollment. Average HbA1c during the 5 years before study enrollment (prebaseline) was compared with HbA1c (postbaseline) averaged during the first half of follow-up (median, 5.1 years). Median prebaseline HbA1c was 9.3%, decreasing to 8.7% postbaseline. Cumulative risk of ESRD after 15 years was significantly lower for patients whose HbA1c decreased than for those whose HbA1c increased or remained poor (29% versus 42%; P<0.001). The difference between these groups was not visible at 5 years of follow-up but became visible at 10 and 15 years of follow-up. In multivariate Cox regression analysis of ESRD risk, the hazard ratio corresponding to a 1-percentage point improvement in postbaseline HbA1c was 0.76 (95% confidence interval, 0.63 to 0.91; P=0.003). In conclusion, results of this study suggest that long-term sustained improvement in HbA1c decelerates eGFR loss and delays the onset of ESRD in patients with T1D and proteinuria.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Hiperglucemia/patología , Fallo Renal Crónico/patología , Proteinuria/diagnóstico , Anciano , Anciano de 80 o más Años , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/orina , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular , Hemoglobina Glucada/análisis , Humanos , Hiperglucemia/sangre , Hiperglucemia/orina , Fallo Renal Crónico/sangre , Fallo Renal Crónico/orina , Masculino , Persona de Mediana Edad , Análisis Multivariante , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Resultado del Tratamiento
12.
J Am Soc Nephrol ; 25(10): 2177-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24904085

RESUMEN

Currently, no blood biomarker that specifically indicates injury to the proximal tubule of the kidney has been identified. Kidney injury molecule-1 (KIM-1) is highly upregulated in proximal tubular cells following kidney injury. The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury. We report that shed KIM-1 also serves as a blood biomarker of kidney injury. Sensitive assays to measure plasma and serum KIM-1 in mice, rats, and humans were developed and validated in the current study. Plasma KIM-1 levels increased with increasing periods of ischemia (10, 20, or 30 minutes) in mice, as early as 3 hours after reperfusion; after unilateral ureteral obstruction (day 7) in mice; and after gentamicin treatment (50 or 200 mg/kg for 10 days) in rats. In humans, plasma KIM-1 levels were higher in patients with AKI than in healthy controls or post-cardiac surgery patients without AKI (area under the curve, 0.96). In patients undergoing cardiopulmonary bypass, plasma KIM-1 levels increased within 2 days after surgery only in patients who developed AKI (P<0.01). Blood KIM-1 levels were also elevated in patients with CKD of varous etiologies. In a cohort of patients with type 1 diabetes and proteinuria, serum KIM-1 level at baseline strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-up, after adjustment for baseline urinary albumin-to-creatinine ratio, eGFR, and Hb1Ac. These results identify KIM-1 as a blood biomarker that specifically reflects acute and chronic kidney injury.


Asunto(s)
Moléculas de Adhesión Celular/sangre , Glicoproteínas de Membrana/sangre , Proteínas de la Membrana/sangre , Receptores Virales/sangre , Insuficiencia Renal/sangre , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/sangre , Femenino , Receptor Celular 1 del Virus de la Hepatitis A , Humanos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Ratas Sprague-Dawley , Adulto Joven
13.
J Am Soc Nephrol ; 25(7): 1415-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24676639

RESUMEN

Podocyte injury and resulting albuminuria are hallmarks of diabetic nephropathy, but targeted therapies to halt or prevent these complications are currently not available. Here, we show that the immune-related molecule B7-1/CD80 is a critical mediator of podocyte injury in type 2 diabetic nephropathy. We report the induction of podocyte B7-1 in kidney biopsy specimens from patients with type 2 diabetes. Genetic and epidemiologic studies revealed the association of two single nucleotide polymorphisms at the B7-1 gene with diabetic nephropathy. Furthermore, increased levels of the soluble isoform of the B7-1 ligand CD28 correlated with the progression to ESRD in individuals with type 2 diabetes. In vitro, high glucose conditions prompted the phosphatidylinositol 3 kinase-dependent upregulation of B7-1 in podocytes, and the ectopic expression of B7-1 in podocytes increased apoptosis and induced disruption of the cytoskeleton that were reversed by the B7-1 inhibitor CTLA4-Ig. Podocyte expression of B7-1 was also induced in vivo in two murine models of diabetic nephropathy, and treatment with CTLA4-Ig prevented increased urinary albumin excretion and improved kidney pathology in these animals. Taken together, these results identify B7-1 inhibition as a potential therapeutic strategy for the prevention or treatment of diabetic nephropathy.


Asunto(s)
Antígeno B7-1/fisiología , Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/etiología , Podocitos , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Regulación hacia Arriba
14.
Kidney Int ; 85(5): 1214-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24429397

RESUMEN

Here we studied plasma metabolomic profiles as determinants of progression to end-stage renal disease (ESRD) in patients with type 2 diabetes (T2D). This nested case-control study evaluated 40 cases who progressed to ESRD during 8-12 years of follow-up and 40 controls who remained alive without ESRD from the Joslin Kidney Study cohort. Controls were matched with cases for baseline clinical characteristics, although controls had slightly higher eGFR and lower levels of urinary albumin excretion than cases. Plasma metabolites at baseline were measured by mass spectrometry-based global metabolomic profiling. Of the named metabolites in the library, 262 were detected in at least 80% of the study patients. The metabolomic platform recognized 78 metabolites previously reported to be elevated in ESRD (uremic solutes). Sixteen were already elevated in the baseline plasma of our cases years before ESRD developed. Other uremic solutes were either not different or not commonly detectable. Essential amino acids and their derivatives were significantly depleted in the cases, whereas certain amino acid-derived acylcarnitines were increased. All findings remained statistically significant after adjustment for differences between study groups in albumin excretion rate, eGFR, or HbA1c. Uremic solute differences were confirmed by quantitative measurements. Thus, abnormal plasma concentrations of putative uremic solutes and essential amino acids either contribute to progression to ESRD or are a manifestation of an early stage(s) of the disease process that leads to ESRD in T2D.


Asunto(s)
Aminoácidos Esenciales/sangre , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Fallo Renal Crónico/etiología , Metabolómica , Uremia/etiología , Anciano , Biomarcadores/sangre , Boston , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Femenino , Tasa de Filtración Glomerular , Hemoglobina Glucada/análisis , Humanos , Riñón/fisiopatología , Fallo Renal Crónico/sangre , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/fisiopatología , Masculino , Espectrometría de Masas , Metabolómica/métodos , Persona de Mediana Edad , Factores de Tiempo , Uremia/sangre , Uremia/diagnóstico , Uremia/fisiopatología
15.
Clin Exp Nephrol ; 18(4): 571-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24218296

RESUMEN

Despite almost universal implementation of renoprotective therapies over the past 25 years, the risk of end-stage renal disease (ESRD) in type 1 diabetes (T1D) is not decreasing, and ESRD remains the major cause of excess morbidity and premature mortality [1]. Such a state of affairs prompts a call to action. In this review we re-evaluated the proteinuria-centric model of diabetic nephropathy and showed its deficiencies. On the basis of extensive studies that we have been conducting on the patients attending the Joslin Clinic, we propose that progressive renal decline, not abnormalities in urinary albumin excretion, should be considered as the major feature of disease processes leading to ESRD in T1D. The etiology of diabetic nephropathy should be reconsidered in light of our new findings so our perspective can be broadened regarding new therapeutic targets available for interrupting the progressive renal decline in T1D. Reduction in the loss of glomerular filtration rate, not reduction of albumin excretion rate, should become the measure for evaluating the effectiveness of new therapeutic interventions. We need new accurate methods for early diagnosis of patients at risk of progressive renal decline or, better still, for detecting in advance which patients will have rapid, moderate or minimal rate of progression to ESRD.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/etiología , Fallo Renal Crónico/etiología , Riñón/fisiopatología , Animales , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/fisiopatología , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/fisiopatología , Modelos Biológicos , Valor Predictivo de las Pruebas , Pronóstico , Proteinuria/etiología , Proteinuria/fisiopatología , Medición de Riesgo , Factores de Riesgo
16.
JCI Insight ; 9(12)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912578

RESUMEN

Our previous study identified 8 risk and 9 protective plasma miRNAs associated with progression to end-stage kidney disease (ESKD) in diabetes. This study aimed to elucidate preanalytical factors that influence the quantification of circulating miRNAs. Using the EdgeSeq platform, which quantifies 2,002 miRNAs in plasma, including ESKD-associated miRNAs, we compared miRNA profiles in whole plasma versus miRNA profiles in RNA extracted from the same plasma specimens. Less than half of the miRNAs were detected in standard RNA extraction from plasma. Detection of individual and concentrations of miRNAs were much lower when RNA extracted from plasma was quantified by RNA sequencing (RNA-Seq) or quantitative reverse transcription PCR (qRT-PCR) platforms compared with EdgeSeq. Plasma profiles of miRNAs determined by the EdgeSeq platform had excellent reproducibility in assessment and had no variation with age, sex, hemoglobin A1c, BMI, and cryostorage time. The risk ESKD-associated miRNAs were detected and measured accurately only in whole plasma and using the EdgeSeq platform. Protective ESKD-associated miRNAs were detected by all platforms except qRT-PCR; however, correlations among concentrations obtained with different platforms were weak or nonexistent. In conclusion, preanalytical factors have a profound effect on detection and quantification of circulating miRNAs in ESKD in diabetes. Quantification of miRNAs in whole plasma and using the EdgeSeq platform may be the preferable method to study profiles of circulating cell-free miRNAs associated with ESKD and possibly other diseases.


Asunto(s)
MicroARN Circulante , Fallo Renal Crónico , Humanos , MicroARN Circulante/sangre , MicroARN Circulante/genética , Fallo Renal Crónico/sangre , Fallo Renal Crónico/genética , Masculino , Femenino , Persona de Mediana Edad , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/diagnóstico , Biomarcadores/sangre , Anciano , Reproducibilidad de los Resultados , Adulto , MicroARNs/sangre , MicroARNs/genética , Progresión de la Enfermedad , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Diabetes Mellitus/diagnóstico
17.
Sci Transl Med ; 16(748): eadj3385, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776390

RESUMEN

Variation in DNA methylation (DNAmet) in white blood cells and other cells/tissues has been implicated in the etiology of progressive diabetic kidney disease (DKD). However, the specific mechanisms linking DNAmet variation in blood cells with risk of kidney failure (KF) and utility of measuring blood cell DNAmet in personalized medicine are not clear. We measured blood cell DNAmet in 277 individuals with type 1 diabetes and DKD using Illumina EPIC arrays; 51% of the cohort developed KF during 7 to 20 years of follow-up. Our epigenome-wide analysis identified DNAmet at 17 CpGs (5'-cytosine-phosphate-guanine-3' loci) associated with risk of KF independent of major clinical risk factors. DNAmet at these KF-associated CpGs remained stable over a median period of 4.7 years. Furthermore, DNAmet variations at seven KF-associated CpGs were strongly associated with multiple genetic variants at seven genomic regions, suggesting a strong genetic influence on DNAmet. The effects of DNAmet variations at the KF-associated CpGs on risk of KF were partially mediated by multiple KF-associated circulating proteins and KF-associated circulating miRNAs. A prediction model for risk of KF was developed by adding blood cell DNAmet at eight selected KF-associated CpGs to the clinical model. This updated model significantly improved prediction performance (c-statistic = 0.93) versus the clinical model (c-statistic = 0.85) at P = 6.62 × 10-14. In conclusion, our multiomics study provides insights into mechanisms through which variation of DNAmet may affect KF development and shows that blood cell DNAmet at certain CpGs can improve risk prediction for KF in T1D.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 1 , Variación Genética , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Metilación de ADN/genética , Masculino , Femenino , Insuficiencia Renal/genética , Insuficiencia Renal/sangre , MicroARNs/genética , MicroARNs/sangre , Adulto , Islas de CpG/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/sangre , Factores de Riesgo
18.
Kidney Int ; 83(6): 1177-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23466993

RESUMEN

The ability of microalbuminuria to predict early progressive renal function decline in type 1 diabetic patients has been questioned. To resolve this, we determined the plasma proteome differences between microalbuminuric patients with type 1 diabetes and stable renal function (controls) and patients at risk for early progressive renal function decline (cases) and asked whether these differences have value as surrogate biomarkers. Mass spectrometry was used to analyze small (<3 kDa) plasma peptides isolated from well-matched case and control plasma obtained at the beginning of an 8-12 year follow-up period. A Spearman analysis of plasma peptide abundance and the rate of renal function decline during follow-up identified seven masses with a significant negative correlation with early progressive renal function decline. Tandem mass spectrometry identified three fragments of high-molecular-weight kininogen. Increased plasma high-molecular-weight kininogen in the cases was confirmed by immunoblot. One peptide, des-Arg9-BK(1-8), induced Erk1/2 phosphorylation when added apically to two proximal tubular cell lines grown on permeable inserts. Thus, we have identified plasma protein fragments, some of which have biological activity with moderate to strong correlation, with early progressive renal function decline in microalbuminuric patients with type 1 diabetes. Other peptides are candidates for validation as candidate biomarkers of diabetes-associated renal dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/etiología , Quininógeno de Alto Peso Molecular/sangre , Fragmentos de Péptidos/sangre , Albuminuria/sangre , Albuminuria/etiología , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Línea Celular , Cromatografía Liquida , Diabetes Mellitus Tipo 1/sangre , Nefropatías Diabéticas/sangre , Progresión de la Enfermedad , Humanos , Túbulos Renales Proximales/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Peso Molecular , Fosforilación , Proyectos Piloto , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Factores de Tiempo
19.
J Am Soc Nephrol ; 23(3): 507-15, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22266663

RESUMEN

Levels of proinflammatory cytokines associate with risk for developing type 2 diabetes but whether chronic inflammation contributes to the development of diabetic complications, such as ESRD, is unknown. In the 1990s, we recruited 410 patients with type 2 diabetes for studies of diabetic nephropathy and recorded their characteristics at enrollment. During 12 years of follow-up, 59 patients developed ESRD (17 per 1000 patient-years) and 84 patients died without ESRD (24 per 1000 patient-years). Plasma markers of systemic inflammation, endothelial dysfunction, and the TNF pathway were measured in the study entry samples. Of the examined markers, only TNF receptors 1 and 2 (TNFR1 and TNFR2) associated with risk for ESRD. These two markers were highly correlated, but ESRD associated more strongly with TNFR1. The cumulative incidence of ESRD for patients in the highest TNFR1 quartile was 54% after 12 years but only 3% for the other quartiles (P<0.001). In Cox proportional hazard analyses, TNFR1 predicted risk for ESRD even after adjustment for clinical covariates such as urinary albumin excretion. Plasma concentration of TNFR1 outperformed all tested clinical variables with regard to predicting ESRD. Concentrations of TNFRs moderately associated with death unrelated to ESRD. In conclusion, elevated concentrations of circulating TNFRs in patients with type 2 diabetes at baseline are very strong predictors of the subsequent progression to ESRD in subjects with and without proteinuria.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/etiología , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/etiología , Receptores Tipo II del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Adulto , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Nefropatías Diabéticas/fisiopatología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Fallo Renal Crónico/fisiopatología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Transducción de Señal/fisiología , Tasa de Supervivencia
20.
J Am Soc Nephrol ; 23(3): 516-24, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22266664

RESUMEN

Elevated plasma concentrations of TNF receptors 1 and 2 (TNFR1 and TNFR2) predict development of ESRD in patients with type 2 diabetes without proteinuria, suggesting these markers may contribute to the pathogenesis of renal decline. We investigated whether circulating markers of the TNF pathway determine GFR loss among patients with type 1 diabetes. We followed two cohorts comprising 628 patients with type 1 diabetes, normal renal function, and no proteinuria. Over 12 years, 69 patients developed estimated GFR less than 60 mL/min per 1.73 m(2) (16 per 1000 person-years). Concentrations of TNFR1 and TNFR2 were strongly associated with risk for early renal decline. Renal decline was associated only modestly with total TNFα concentration and appeared unrelated to free TNFα. The cumulative incidence of estimated GFR less than 60 mL/min per 1.73 m(2) for patients in the highest TNFR2 quartile was 60% after 12 years compared with 5%-19% in the remaining quartiles. In Cox proportional hazards analysis, patients with TNFR2 values in the highest quartile were threefold more likely to experience renal decline than patients in the other quartiles (hazard ratio, 3.0; 95% confidence interval, 1.7-5.5). The risk associated with high TNFR1 values was slightly less than that associated with high TNFR2 values. TNFR levels were unrelated to baseline free TNFα level and remained stable over long periods within an individual. In conclusion, early GFR loss in patients with type 1 diabetes without proteinuria is strongly associated with circulating TNF receptor levels but not TNFα levels (free or total).


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Enfermedades Renales/epidemiología , Enfermedades Renales/etiología , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/etiología , Receptores Tipo II del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Adulto , Biomarcadores/sangre , Enfermedad Crónica , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular/fisiología , Humanos , Riñón/fisiopatología , Enfermedades Renales/fisiopatología , Fallo Renal Crónico/fisiopatología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA