Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Phycol ; 57(5): 1580-1589, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34164815

RESUMEN

Delayed gametophytes are able to grow vegetatively for prolonged periods of time. As such, they are potentially very valuable for kelp aquaculture given their great promise in opening up novel opportunities for kelp breeding and farming. However, large-scale application would require more in-depth understanding of how to control reproduction in delayed gametophytes. For newly formed gametophytes, many environmental factors for reproduction have been identified, with key drivers being light intensity, temperature, and the initial gametophyte density. However, the question of whether delayed gametophytes react similarly to these life cycle controls remains open for exploration. In this study, we performed a full factorial experiment on the influences of light intensity, temperature, and density on the reproduction of multiannual delayed gametophytes of Saccharina latissima, during which the number of sporophytes formed was counted. We demonstrate that delayed gametophytes of S. latissima can reliably reproduce sexually after more than a year of vegetative growth, depending on the effects between light intensity and temperature. Under higher light intensities (≥29 µmol photons · m-2 · s-1 ), optimal reproduction was observed at lower temperatures (10.2°C), while at lower light intensities (≤15 µmol photons · m-2 · s-1 ), optimal reproduction was observed at higher temperatures (≥12.6°C). Given the seasonal lag between solar radiation and sea surface temperature in natural systems, these conditions resemble those found during spring (i.e., increasing light intensity with low temperatures) and autumn (i.e., decreasing light intensity with higher temperatures). Seasonality can be used as an aquaculture tool to better control the reproduction of delayed gametophytes.


Asunto(s)
Kelp , Phaeophyceae , Células Germinativas de las Plantas , Reproducción , Temperatura
2.
J Phycol ; 56(3): 709-718, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32108344

RESUMEN

Kelp life-cycle transitions are complex and susceptible to various (a)biotic controls. Understanding the microscopic part of the kelp's lifecycle is of key importance, as gametophytes form a critical phase influencing, among others, the distributional limits of the species. Many environmental controls have been identified that affect kelp gametogenesis, whose interactive effects can be subtle and counterintuitive. Here we performed a fully factorial experiment on the (interactive) influences of light intensity, light quality, and the Initial Gametophyte Density (IGD) on Saccharina latissima reproduction and vegetative growth of delayed gametophytes. A total of 144 cultures were followed over a period of 21 d. The IGD was a key determinant for reproductive success, with increased IGDs (≥0.04 mg DW · mL-1 ) practically halting reproduction. Interestingly, the effects of IGDs were not affected by nutrient availability, suggesting a resource-independent effect of density on reproduction. The Photosynthetically Usable Radiation (PUR), overarching the quantitative contribution of both light intensity and light quality, correlated with both reproduction and vegetative growth. The PUR furthermore specifies that the contribution of light quality, as a lifecycle control, is a matter of absorbed photon flux instead of color signaling. We hypothesize that (i) the number of photons absorbed, independent of their specific wavelength, and (ii) IGD interactions, independent of nutrient availability, are major determinants of reproduction in S. latissima gametophytes. These insights help understand kelp gametophyte development and dispersal under natural conditions, while also aiding the control of in vitro gametophyte cultures.


Asunto(s)
Kelp , Phaeophyceae , Biomasa , Células Germinativas de las Plantas , Reproducción
3.
Environ Sci Technol ; 52(21): 12039-12054, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30247887

RESUMEN

Assessing phytoplankton productivity over space and time remains a core goal for oceanographers and limnologists. Fast Repetition Rate fluorometry (FRRf) provides a potential means to realize this goal with unprecedented resolution and scale yet has not become the "go-to" method despite high expectations. A major obstacle is difficulty converting electron transfer rates to equivalent rates of C-fixation most relevant for studies of biogeochemical C-fluxes. Such difficulty stems from methodological inconsistencies and our limited understanding of how the electron requirement for C-fixation (Φe,C) is influenced by the environment and by differences in the composition and physiology of phytoplankton assemblages. We outline a "roadmap" for limiting methodological bias and to develop a more mechanistic understanding of the ecophysiology underlying Φe,C. We 1) re-evaluate core physiological processes governing how microalgae invest photosynthetic electron transport-derived energy and reductant into stored carbon versus alternative sinks. Then, we 2) outline steps to facilitate broader uptake and exploitation of FRRf, which could transform our knowledge of aquatic primary productivity. We argue it is time to 3) revise our historic methodological focus on carbon as the currency of choice, to 4) better appreciate that electron transport fundamentally drives ecosystem biogeochemistry, modulates cell-to-cell interactions, and ultimately modifies community biomass and structure.


Asunto(s)
Clorofila A , Ecosistema , Clorofila , Agua Dulce , Fotosíntesis , Fitoplancton
4.
Plant Physiol ; 165(1): 463-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24696521

RESUMEN

A method is presented for rapid extraction of the total plastoquinone (PQ) pool from Synechocystis sp. strain PCC 6803 cells that preserves the in vivo plastoquinol (PQH2) to -PQ ratio. Cells were rapidly transferred into ice-cold organic solvent for instantaneous extraction of the cellular PQ plus PQH2 content. After high-performance liquid chromatography fractionation of the organic phase extract, the PQH2 content was quantitatively determined via its fluorescence emission at 330 nm. The in-cell PQH2-PQ ratio then followed from comparison of the PQH2 signal in samples as collected and in an identical sample after complete reduction with sodium borohydride. Prior to PQH2 extraction, cells from steady-state chemostat cultures were exposed to a wide range of physiological conditions, including high/low availability of inorganic carbon, and various actinic illumination conditions. Well-characterized electron-transfer inhibitors were used to generate a reduced or an oxidized PQ pool for reference. The in vivo redox state of the PQ pool was correlated with the results of pulse-amplitude modulation-based chlorophyll a fluorescence emission measurements, oxygen exchange rates, and 77 K fluorescence emission spectra. Our results show that the redox state of the PQ pool of Synechocystis sp. strain PCC 6803 is subject to strict homeostatic control (i.e. regulated between narrow limits), in contrast to the more dynamic chlorophyll a fluorescence signal.


Asunto(s)
Homeostasis , Plastoquinona/metabolismo , Synechocystis/metabolismo , Técnicas de Cultivo Celular por Lotes , Clorofila/metabolismo , Clorofila A , Cromatografía Líquida de Alta Presión , Transporte de Electrón/efectos de la radiación , Semivida , Homeostasis/efectos de la radiación , Luz , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas/metabolismo , Espectrometría de Fluorescencia , Synechocystis/citología , Synechocystis/crecimiento & desarrollo , Synechocystis/efectos de la radiación
5.
Photosynth Res ; 119(3): 257-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24135997

RESUMEN

Photosynthetic energy consumption and non-photosynthetic energy quenching processes are inherently linked. Both processes must be controlled by the cell to allow cell maintenance and growth, but also to avoid photodamage. We used the chlorophyte algae Dunaliella tertiolecta to investigate how the interactive regulation of photosynthetic and non-photosynthetic pathways varies along dissolved inorganic carbon (DIC) and photon flux gradients. Specifically, cells were transferred to DIC-deplete media to reach a CO2 compensation before being re-supplied with DIC at various concentrations and different photon flux levels. Throughout these experiments we monitored and characterized the photophysiological responses using pulse amplitude modulated fluorescence, oxygen evolution, 77 K fluorescence emission spectra, and fast-repetition rate fluorometry. O2 uptake was not significantly stimulated at DIC depletion, which suggests that O2 production rates correspond to assimilatory photosynthesis. Fluorescence-based measures of relative electron transport rates (rETRs) over-estimated oxygen-based photosynthetic measures due to a strong state-transitional response that facilitated high effective quantum yields. Adoption of an alternative fluorescence-based rETR calculation that accounts for state-transitions resulted in improved linear oxygen versus rETR correlation. This study shows the extraordinary capacity of D. tertiolecta to maintain stable effective quantum yields by flexible regulation of state-transitions. Uncertainties about the control mechanisms of state-transitions are presented.


Asunto(s)
Carbono/metabolismo , Chlorophyta/fisiología , Fotosíntesis/fisiología , Carbono/farmacología , Dióxido de Carbono/metabolismo , Chlorophyta/efectos de los fármacos , Transporte de Electrón , Fluorescencia , Luz , Espectrometría de Masas/métodos , Oxígeno/metabolismo , Fotones , Teoría Cuántica
6.
Environ Sci Technol ; 47(12): 6573-81, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23718890

RESUMEN

Previous studies have demonstrated that ionic and non-ionic natural rubber-based coatings inhibit adhesion and growth of marine bacteria, fungi, microalgae, and spores of macroalgae. Nevertheless, the mechanism of action of these coatings on the different micro-organisms is not known. In the current study, antifouling activity of a series of these rubber-based coatings (one ionic and two non-ionic) was studied with respect to impacts on marine microalgal photosynthesis using pulse-amplitude-modulation (PAM) fluorescence. When grown in contact with the three different coatings, an inhibition of photosynthetic rate (relative electron transport rate, rETR) was observed in all of the four species of pennate diatoms involved in microfouling, Cocconeis scutellum, Amphora coffeaeformis, Cylindrotheca closterium, and Navicula jeffreyi. The percentage of inhibition ranged from 44% to 100% of the controls, depending on the species and the coating. The ionic coating was the most efficient antifouling (AF) treatment, and C. scutellum and A. coffeaeformis are the most sensitive and tolerant diatoms tested, respectively. Photosynthetic inhibition was reversible, as almost complete recovery of rETR was observed 48 h post exposure, after detachment of cells from the coatings. Thus, the antifouling activity seemed mostly due to an effect of contact with materials. It is hypothesized that photosynthetic activity was suppressed by coatings due to interference in calcium availability to the microalgal cells; Ca(2+) has been shown to be an essential micro/macro nutrient for photosynthesis, as well as being involved in cell adhesion and motility in pennate diatoms.


Asunto(s)
Butadienos/química , Hemiterpenos/química , Microalgas/efectos de los fármacos , Pentanos/química , Fotosíntesis/efectos de los fármacos , Polímeros/química , Polímeros/farmacología
7.
Photosynth Res ; 110(2): 123-37, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22101577

RESUMEN

Highly time-resolved photoacclimation patterns of the chlorophyte microalga Dunaliella tertiolecta during exposure to an off-on-off (block) light pattern of saturating photon flux, and to a regime of consecutive increasing light intensities are presented. Non-photochemical quenching (NPQ) mechanisms unexpectedly responded with an initial decrease during dark-light transitions. NPQ values started to rise after light exposure of approximately 4 min. State-transitions, measured as a change of PSII:PSI fluorescence emission at 77 K, did not contribute to early NPQ oscillations. Addition of the uncoupler CCCP, however, caused a rapid increase in fluorescence and showed the significance of qE for NPQ. Partitioning of the quantum efficiencies showed that constitutive NPQ was (a) higher than qE-driven NPQ and (b) responded to light treatment within seconds, suggesting an active role of constitutive NPQ in variable energy dissipation, although it is thought to contribute statically to NPQ. The PSII connectivity parameter p correlated well with F', F(m)' and NPQ during the early phase of the dark-light transients in sub-saturating light, suggesting a plastic energy distribution pattern within energetically connected PSII centres. In consecutive increasing photon flux experiments, correlations were weaker during the second light increment. Changes in connectivity can present an early photoresponse that are reflected in fluorescence signals and NPQ and might be responsive to the short-term acclimation state, and/or to the actinic photon flux.


Asunto(s)
Aclimatación , Microalgas/efectos de la radiación , Procesos Fotoquímicos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Clorofila/metabolismo , Fluorescencia , Luz , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Fotones , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Factores de Tiempo
8.
PLoS One ; 16(7): e0246012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34228730

RESUMEN

In depositional intertidal coastal systems, primary production is dominated by benthic microalgae (microphytobenthos) inhabiting the mudflats. This benthic productivity is supporting secondary production and supplying important services to humans including food provisioning. Increased frequencies of extreme events in weather (such as heatwaves, storm surges and cloudbursts) are expected to strongly impact the spatiotemporal dynamics of the microphytobenthos and subsequently their contribution to coastal food webs. Within north-western Europe, the years 2018 and 2019 were characterized by record-breaking summer temperatures and accompanying droughts. Field-calibrated satellite data (Sentinel 2) were used to quantify the seasonal dynamics of microphytobenthos biomass and production at an unprecedented spatial and temporal resolution during these years. We demonstrate that the Normalized Difference Vegetation Index (NDVI) should be used with caution in depositional coastal intertidal systems, because it may reflect import of remains of allochthonous pelagic productivity rather than local benthic biomass. We show that the reduction in summer biomass of the benthic microalgae cannot be explained by grazing but was most probably due to the high temperatures. The fivefold increase in salinity from January to September 2018, resulting from reduced river run-off during this exceptionally dry year, cannot have been without consequences for the vitality of the microphytobenthos community and its resistance to wind stress and cloud bursts. Comparison to historical information revealed that primary productivity of microphytobenthos may vary at least fivefold due to variations in environmental conditions. Therefore, ongoing changes in environmental conditions and especially extreme events because of climate change will not only lead to changes in spatiotemporal patterns of benthic primary production but also to changes in biodiversity of life under water and ecosystem services including food supply. Satellite MPB data allows for adequate choices in selecting coastal biodiversity conservation and coastal food supply.


Asunto(s)
Biomasa , Biodiversidad , Cambio Climático , Diatomeas , Cadena Alimentaria , Microalgas , Salinidad , Estaciones del Año , Temperatura
9.
Front Microbiol ; 12: 617802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897635

RESUMEN

Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.

10.
FEMS Microbiol Ecol ; 94(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228257

RESUMEN

The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. This study explored if strains from different environments and different morphotypes, isolated from three locations in the Atlantic Iberian Peninsula and two from the Mediterranean Sea, showed different responses to varying light regimes, after confirming that all strains belonged to the same ribotype. Growth rates and photosynthetic parameters such as Fo, Fv/Fm, and rETRmax were analysed with a Coulter counter, a water-PAM and a fast repetition rate fluorometer. The photosynthetic properties were investigated in a high light stress experiment using strains acclimated to low light (LL) and high light (HL). The highest growth rate was 0.23 day-1 at 80 and 100 µmol photons m-2 s-1 for strains Dn150EHU and Dn60EHU, originated from different locations. Under control conditions (18°C and 90 µmol photons m-2 s-1), growth rate was on average 0.10 day-1. The HL stress exposure induced photodamage to all strains and the recovery period was not sufficiently long for full recovery of Fv/Fm. However, cells acclimated to HL showed a better recovery than the LL acclimated ones. Furthermore, some assumptions are discussed in relation to strains' original location.


Asunto(s)
Dinoflagelados/crecimiento & desarrollo , Luz , Fotosíntesis/fisiología , Aclimatación , Océano Atlántico , Dinoflagelados/efectos de la radiación , Mar Mediterráneo , Estrés Fisiológico/fisiología
11.
FEMS Microbiol Ecol ; 83(3): 700-10, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23057858

RESUMEN

The cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M. aeruginosa acclimatizes to changing light conditions such as can occur during blooms. Three different strains were exposed to two irradiance levels: lower (LL) and higher (HL) than the irradiance-onset saturation parameter. We measured the photosynthetic pigment concentrations, PSII photochemical efficiency, electron transport rate (ETR), irradiance-saturated ETR and ETR efficiency. The relationship between ETR and photosynthetic oxygen production and the excess in PSII capacity were also studied for one strain. Higher values of chlorophyll a and phycocyanin and lower values of total carotenoids were found under LL conditions in the three strains. The strains showed clear differences in the irradiance-saturated ETR and in ETR efficiency under both LL and HL treatments. No differences were found in the linear relationship between ETR and photosynthetic oxygen production under both irradiance treatments. LL-acclimated cells showed higher PSII excess capacity than HL ones, possibly because their higher pigment content could result in a higher light stress than HL cells when forming surface blooms. The fact that the genetically different strains show different photosynthetic physiologies suggests that the very dynamic light climate observed in lakes may allow their coexistence.


Asunto(s)
Aclimatación/fisiología , Luz , Microcystis/fisiología , Fotosíntesis/fisiología , Carotenoides/análisis , Clorofila/análisis , Clorofila A , Transporte de Electrón/fisiología , Eutrofización , Microcystis/genética , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/análisis , Ficocianina/análisis
12.
PLoS One ; 8(3): e58137, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516441

RESUMEN

Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and (14)C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e(-) (mol C)(-1) with a mean of 10.9 ± 6.91 mol e(-) mol C)(-1). Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φ e,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φ e,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φ e,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φ e,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy.


Asunto(s)
Ciclo del Carbono , Electrones , Agua de Mar/química , Agua de Mar/microbiología , Bacterias/metabolismo , Ecosistema , Ambiente , Geografía , Nitratos/química , Fitoplancton/metabolismo , Análisis Espacio-Temporal
13.
FEMS Microbiol Ecol ; 82(3): 584-96, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22671029

RESUMEN

Stromatolites are laminated organosedimentary structures formed by microbial communities, principally cyanobacteria although eucaryote phototrophs may also be involved in the construction of modern stromatolites. In this study, productivity and photophysiology of communities from stromatolites (laminated) and thrombolites (nonlaminated) were analysed using fluorescence imaging. Sub-samples of mats were excised at Highborne Cay, Bahamas, and cross-sectioned to simultaneously analyse surface, near-surface (1-2 mm), and deeper (2-10 mm) communities. Rapid light curve parameters and nonphotochemical downregulation showed distinct differences between phototroph communities, consistent with the reported quasi-succession of classic stromatolite mat types. Greater productivity was shown by cyanobacteria in Type 1 and Type 3 mats (first and final stage of the succession, Schizothrix gebeleinii and Solentia sp. respectively) and lower productivity within Type 2 mats (intermediate mat type). Eucaryote mat types, dominated by stalked (Striatella sp. and Licmophora sp.) and tube-dwelling (e.g. Nitzschia and Navicula spp.) diatoms, showed greater productivity than cyanobacteria communities, with the exception of Striatella (low productivity) and an unidentified coccoid cyanobacterium (high productivity). Findings indicate comparative variability between photosynthetically active procaryote and eucaryote sub-communities within stromatolites, with a pattern logically following the succession of 'classic' mat types, and lower than the productivity of eucaryote dominated 'nonclassic' mat types.


Asunto(s)
Cianobacterias/fisiología , Diatomeas/fisiología , Ecosistema , Agua de Mar/microbiología , Bahamas , Clorofila/análisis , Cianobacterias/química , Cianobacterias/aislamiento & purificación , Diatomeas/química , Diatomeas/clasificación , Diatomeas/aislamiento & purificación , Fluorometría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA