Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(6): 1270-1273, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37069695

RESUMEN

Phylogenetic analysis of 34 monkeypox virus genome sequences isolated from patients in Minas Gerais, Brazil, revealed initial importation events in early June 2022, then community transmission within the state. All generated genomes belonged to the B.1 lineage responsible for a global mpox outbreak. These findings can inform public health measures.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Brasil/epidemiología , Brotes de Enfermedades , Genómica , Mpox/epidemiología
2.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34342561

RESUMEN

Dengue virus (DENV) is the most prevalent pathogen of the Flaviviridae family. Due to the considerable increase in DENV incidence and spread, symptoms such as CNS involvement have increased. Heparan sulphate (HS) was the first molecule identified as an adhesion factor for DENV in mammalian cells. Viral phenotypes with different HS interactions are associated with various clinical symptoms, including neurological alterations. Here, using in silico analyses, in vitro studies, and the in vivo mouse model, we characterized two natural circulating DENV3 genotype I (GI) lineage 1 (L1) in Brazil-DENV3 MG-20 (from Minas Gerais) and DENV3 PV_BR (from Rondônia) that present divergent neurovirulent profiles and sensitivity to sulphated molecules. We identified substitutions at the viral envelope (E) in positions 62 and 123 as likely responsible for the differences in neurovirulence. The E62K and E123Q substitutions in DENV3 MG-20 and DENV3 PV_BR, respectively, greatly influenced in silico electrostatic density and heparin docking results. In vivo, mice inoculated with DENV3 MG-20 died, but not those infected with DENV3 PV_BR. The clinical symptoms, such as paralysis of the lower limbs and meningoencephalitis, and histopathology, also differed between the inoculated groups. In vitro heparin and heparinases assays further demonstrated the biological impact of these substitutions. Other characteristics that have been previously associated with alterations in cell tropism and neurovirulence, such as changes in the size of lysis plaques and differences in cytopathic effects in glioblastoma cells, were also observed.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/genética , Dengue/virología , Genotipo , Heparitina Sulfato/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Sitios de Unión , Encéfalo/patología , Comunicación Celular , Línea Celular , Dengue/patología , Virus del Dengue/fisiología , Modelos Animales de Enfermedad , Femenino , Heparina , Interacciones Huésped-Patógeno/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Fenotipo , Filogenia , Conformación Proteica , Proteínas del Envoltorio Viral/clasificación , Proteínas del Envoltorio Viral/genética , Virulencia , Acoplamiento Viral
3.
Mater Lett ; 277: 128279, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32834256

RESUMEN

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus via covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

5.
Mem Inst Oswaldo Cruz ; 114: e190074, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31460570

RESUMEN

BACKGROUND: Hepatitis delta virus (HDV) infections in hepatitis B virus (HBV) carriers are the most severe form of viral hepatitis. HDV prevalence is high in the Brazilian Amazon, but studies in other regions of the country are still scarce and often underestimated its prevalence by including a small numbers of individuals. OBJECTIVE: This study aimed to determine the serological prevalence of hepatitis D, the genotypes circulating and to evaluate the associated risk factors for acquisition of HDV in Minas Gerais state, Brazil. METHODS: We screened plasma samples (n = 498) from HBV chronic carriers for anti-HD antibodies using a commercial enzyme-linked immunosorbent assay (ELISA) kit. For those samples that were positive for anti-HD antibodies, we performed a reverse transcriptase (RT) nested-polymerase chain reaction (nested-PCR) in order to detect the viral genome and identify the viral genotypes circulating in the state. FINDINGS: The prevalence was 6.22% (31/498). Blood transfusion was the only risk factor associated with HDV infection [risk ratio: 3.73; 95% confidence interval (CI): 1.44 to 9.65]. For 26 anti-HD positive patients, HDAg gene sequences were determined and in all patients HDV genotype 1 was found. CONCLUSIONS: This study confirmed the circulation of HDV in Minas Gerais, an area previously considered non-endemic for hepatitis D in Brazil. The prevalence found in this study is much higher when compared to other studies performed in Brazil, probably because the population in our study was selected with minimal bias. Furthermore, in 26 anti-HD positive plasma samples, we were also able to detect the viral genome, indicating that these patients were experienced an active infection at the time of sample collection. These findings emphasise the importance of anti-HD testing in HBV infected individuals, which may contribute to this disease control in Brazil.


Asunto(s)
Anticuerpos Antihepatitis/sangre , Hepatitis B Crónica/epidemiología , Hepatitis D/epidemiología , Virus de la Hepatitis Delta , ARN Viral/genética , Adolescente , Adulto , Brasil/epidemiología , Niño , Preescolar , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Genotipo , Hepatitis B Crónica/complicaciones , Hepatitis D/complicaciones , Hepatitis D/diagnóstico , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/inmunología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , Prevalencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Riesgo , Adulto Joven
6.
Virol J ; 15(1): 22, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29368617

RESUMEN

BACKGROUND: Since the discovery of giant viruses infecting amoebae in 2003, many dogmas of virology have been revised and the search for these viruses has been intensified. Over the last few years, several new groups of these viruses have been discovered in various types of samples and environments.In this work, we describe the isolation of 68 giant viruses of amoeba obtained from environmental samples from Brazil and Antarctica. METHODS: Isolated viruses were identified by hemacolor staining, PCR assays and electron microscopy (scanning and/or transmission). RESULTS: A total of 64 viruses belonging to the Mimiviridae family were isolated (26 from lineage A, 13 from lineage B, 2 from lineage C and 23 from unidentified lineages) from different types of samples, including marine water from Antarctica, thus being the first mimiviruses isolated in this extreme environment to date. Furthermore, a marseillevirus was isolated from sewage samples along with two pandoraviruses and a cedratvirus (the third to be isolated in the world so far). CONCLUSIONS: Considering the different type of samples, we found a higher number of viral groups in sewage samples. Our results reinforce the importance of prospective studies in different environmental samples, therefore improving our comprehension about the circulation anddiversity of these viruses in nature.


Asunto(s)
Microbiología Ambiental , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Amoeba , Animales , Regiones Antárticas , Brasil , ADN Viral , Genoma Viral , Geografía , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Humanos , Filogenia , Análisis de Secuencia de ADN
7.
Emerg Infect Dis ; 23(6): 931-938, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28518030

RESUMEN

Vaccinia virus (VACV) is a zoonotic agent that causes a disease called bovine vaccinia, which is detected mainly in milking cattle and humans in close contact with these animals. Even though many aspects of VACV infection have been described, much is still unknown about its circulation in the environment and its natural hosts/reservoirs. To investigate the presence of Orthopoxvirus antibodies or VACV DNA, we captured small rodents and marsupials in 3 areas of Minas Gerais state, Brazil, and tested their samples in a laboratory. A total of 336 animals were tested; positivity ranged from 18.1% to 25.5% in the 3 studied regions located in different biomes, including the Atlantic Forest and the Cerrado. Analysis of nucleotide sequences indicated co-circulation of VACV groups I and II. Our findings reinforce the possible role played by rodents and marsupials in VACV maintenance and its transmission chain.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Bovinos/epidemiología , ADN Viral/sangre , Brotes de Enfermedades , Marsupiales/virología , Roedores/virología , Vaccinia/epidemiología , Animales , Brasil/epidemiología , Bovinos , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/transmisión , Reservorios de Enfermedades/virología , Incidencia , Tipificación Molecular , Vaccinia/sangre , Vaccinia/transmisión , Vaccinia/veterinaria , Virus Vaccinia/clasificación , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad
8.
Arch Virol ; 162(10): 3205-3207, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28667442

RESUMEN

In recent years, giant viruses belonging to the family Mimiviridae have been proposed to be infectious agents in humans. In this work we provide evidence of mimivirus genome and neutralizing antibodies detection in humans.


Asunto(s)
Anticuerpos Antivirales/sangre , Genoma Viral , Mimiviridae/aislamiento & purificación , Brasil , Humanos , Mimiviridae/genética
9.
Arch Virol ; 162(10): 2971-2981, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28620810

RESUMEN

Usurpation of the host's signalling pathways is a common strategy employed by viruses to promote their successful replication. Here we show that infection with the orthopoxvirus vaccinia virus (VACV) leads to sustained stimulation of c-Jun activity during the entire infective cycle. This stimulation is temporally regulated through MEK/ERK or MKK/JNK pathways, i.e. during the early/mid phase (1 to 6 hpi) and in the late phase (9 to 24 hpi) of the infective cycle, respectively. As a transcriptional regulator, upon infection with VACV, c-Jun is translocated from the cytoplasm to the nucleus, where it binds to the AP-1 DNA sequence found at the promoter region of its target genes. To investigate the role played by c-Jun during VACV replication cycle, we generated cell lines that stably express a c-Jun-dominant negative (DNc-Jun) mutation. Our data revealed that c-Jun is required during early infection to assist with viral DNA replication, as demonstrated by the decreased amount of viral DNA found in the DNc-Jun cells. We also demonstrated that c-Jun regulates the expression of the early growth response gene (egr-1), a gene previously shown to affect VACV replication mediated by MEK/ERK signalling. VACV-induced stimulation of the MKK/JNK/JUN pathway impacts viral dissemination, as we observed a significant reduction in both viral yield, during late stages of infection, and virus plaque size. Collectively, our data suggest that, by modulating the host's signalling pathways through a common target such as c-Jun, VACV temporally regulates its infective cycle in order to successfully replicate and subsequently spread.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Virus Vaccinia/fisiología , Animales , Línea Celular , ADN Viral , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibroblastos/virología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Viral de la Expresión Génica/fisiología , MAP Quinasa Quinasa 4/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Fosforilación , Proteínas Proto-Oncogénicas c-jun/genética , Replicación Viral
10.
J Nanobiotechnology ; 15(1): 26, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28376812

RESUMEN

BACKGROUND: Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS: The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS: Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS: Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.


Asunto(s)
Formación de Anticuerpos , Vacunas contra el Dengue/inmunología , Dengue/prevención & control , Nanotubos de Carbono/química , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Proliferación Celular , Citocinas/inmunología , Dengue/inmunología , Vacunas contra el Dengue/uso terapéutico , Virus del Dengue/inmunología , Femenino , Inmunidad Celular , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Nanoconjugados/química , Nanomedicina , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Espectrometría Raman , Bazo/citología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico
11.
An Acad Bras Cienc ; 89(3): 1555-1564, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28954173

RESUMEN

Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with ß-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with ß-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.


Asunto(s)
Antibacterianos/farmacología , Antidiarreicos/farmacología , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Maytenus/química , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/farmacología , Antibacterianos/aislamiento & purificación , Antidiarreicos/aislamiento & purificación , Antivirales/aislamiento & purificación , Línea Celular , Maytenus/clasificación , Triterpenos Pentacíclicos/aislamiento & purificación
12.
Environ Microbiol ; 18(1): 232-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26235221

RESUMEN

This study assessed the diversity of cultivable rock-associated fungi from Atacama Desert. A total of 81 fungal isolates obtained were identified as 29 Ascomycota taxa by sequencing different regions of DNA. Cladosporium halotolerans, Penicillium chrysogenum and Penicillium cf. citrinum were the most frequent species, which occur at least in four different altitudes. The diversity and similarity indices ranged in the fungal communities across the latitudinal gradient. The Fisher-α index displayed the higher values for the fungal communities obtained from the siltstone and fine matrix of pyroclastic rocks with finer grain size, which are more degraded. A total of 23 fungal extracts displayed activity against the different targets screened. The extract of P. chrysogenum afforded the compounds α-linolenic acid and ergosterol endoperoxide, which were active against Cryptococcus neoformans and methicillin-resistance Staphylococcus aureus respectively. Our study represents the first report of a new habitat of fungi associated with rocks of the Atacama Desert and indicated the presence of interesting fungal community, including species related with saprobes, parasite/pathogen and mycotoxigenic taxa. The geological characteristics of the rocks, associated with the presence of rich resident/resilient fungal communities suggests that the rocks may provide a favourable microenvironment fungal colonization, survival and dispersal in extreme conditions.


Asunto(s)
Ascomicetos/metabolismo , Cladosporium/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Sedimentos Geológicos/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Penicillium/metabolismo , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Chile , Cladosporium/clasificación , Cladosporium/genética , Cladosporium/aislamiento & purificación , Clima Desértico , Ecología , Ecosistema , Datos de Secuencia Molecular , Penicillium/clasificación , Penicillium/genética , Penicillium/aislamiento & purificación
13.
Arch Virol ; 161(11): 2991-3002, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27465567

RESUMEN

The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1(-/-) MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1(-/-) MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1(-/-) cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Virus Vaccinia/fisiología , Internalización del Virus , Quinasas p21 Activadas/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Quinasas p21 Activadas/genética
14.
Arch Virol ; 160(2): 477-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25344898

RESUMEN

Viruses are ubiquitous organisms, but their role in the ecosystem and their prevalence are still poorly understood. Mimiviruses are extremely complex and large DNA viruses. Although metagenomic studies have suggested that members of the family Mimiviridae are abundant in oceans, there is a lack of information about the association of mimiviruses with marine organisms. In this work, we demonstrate by molecular and virological methods that oysters are excellent sources for mimiviruses isolation. Our data not only provide new information about the biology of these viruses but also raise questions regarding the role of oyster consumption as a putative source of mimivirus infection in humans.


Asunto(s)
Infecciones por Virus ADN/transmisión , Infecciones por Virus ADN/virología , Mimiviridae/aislamiento & purificación , Ostreidae/virología , Animales , Genes Virales , Variación Genética , Genoma Viral , Humanos , Mimiviridae/genética , Océanos y Mares , Filogenia
15.
Arch Virol ; 160(11): 2703-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26239343

RESUMEN

Vaccinia virus (VACV), the etiological agent of bovine vaccinia (BV), is widespread in Brazil and present in most of the milk-producing regions. We conducted a horizontal study of BV in Bahia, a state of Brazil in which the production of milk is increasing. During 2011, human and bovine clinical samples were collected during outbreaks for BV diagnosis, virus isolation and molecular analysis. We collected data for epidemiological inferences. Vaccinia virus was detected in 87.7% of the analyzed outbreaks, highlighting the effective circulation of VACV in Bahia. The molecular data showed the spreading of group 1 Brazilian VACV to Bahia. We observed a seasonal profile of BV, with its peak in the drier and cooler season. Manual milking was observed in 96 % of the visited properties, showing its importance to viral spread in herds. Under-notification of BV, ineffective animal trade surveillance, and bad milking practices have contributed to the spread of VACV in Brazil.


Asunto(s)
Enfermedades de los Bovinos/virología , Filogenia , Virus Vaccinia/clasificación , Virus Vaccinia/aislamiento & purificación , Vaccinia/veterinaria , Vaccinia/virología , Animales , Brasil , Bovinos , Enfermedades de los Bovinos/economía , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Brotes de Enfermedades/economía , Humanos , Vaccinia/economía , Vaccinia/epidemiología , Vaccinia/transmisión , Virus Vaccinia/genética , Zoonosis/economía , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
16.
Emerg Infect Dis ; 20(3): 469-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24564967

RESUMEN

To investigate circulation of mimiviruses in the Amazon Region of Brazil, we surveyed 513 serum samples from domestic and wild mammals. Neutralizing antibodies were detected in 15 sample pools, and mimivirus DNA was detected in 9 pools of serum from capuchin monkeys and in 16 pools of serum from cattle.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Virosis/veterinaria , Secuencia de Aminoácidos , Animales , Animales Domésticos , Animales Salvajes , Brasil/epidemiología , ADN Viral , Geografía , Mamíferos , Mimiviridae , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Carga Viral
17.
Virol J ; 11: 120, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24976356

RESUMEN

In 2003, Acanthamoeba polyphaga mimivirus (APMV) was first described and began to impact researchers around the world, due to its structural and genetic complexity. This virus founded the family Mimiviridae. In recent years, several new giant viruses have been isolated from different environments and specimens. Giant virus research is in its initial phase and information that may arise in the coming years may change current conceptions of life, diversity and evolution. Thus, this review aims to condense the studies conducted so far about the features and peculiarities of APMV, from its discovery to its clinical relevance.


Asunto(s)
Mimiviridae/aislamiento & purificación , Virología/tendencias , Mimiviridae/genética , Mimiviridae/fisiología
18.
Virol J ; 11: 95, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24886672

RESUMEN

BACKGROUND: The identification of novel giant viruses from the nucleocytoplasmic large DNA viruses group and their virophages has increased in the last decade and has helped to shed light on viral evolution. This study describe the discovery, isolation and characterization of Samba virus (SMBV), a novel giant virus belonging to the Mimivirus genus, which was isolated from the Negro River in the Brazilian Amazon. We also report the isolation of an SMBV-associated virophage named Rio Negro (RNV), which is the first Mimivirus virophage to be isolated in the Americas. METHODS/RESULTS: Based on a phylogenetic analysis, SMBV belongs to group A of the putative Megavirales order, possibly a new virus related to Acanthamoeba polyphaga mimivirus (APMV). SMBV is the largest virus isolated in Brazil, with an average particle diameter about 574 nm. The SMBV genome contains 938 ORFs, of which nine are ORFans. The 1,213.6 kb SMBV genome is one of the largest genome of any group A Mimivirus described to date. Electron microscopy showed RNV particle accumulation near SMBV and APMV factories resulting in the production of defective SMBV and APMV particles and decreasing the infectivity of these two viruses by several logs. CONCLUSION: This discovery expands our knowledge of Mimiviridae evolution and ecology.


Asunto(s)
Mimiviridae/aislamiento & purificación , Filogenia , Ríos/virología , Brasil , ADN Viral/química , ADN Viral/genética , Microscopía Electrónica de Transmisión , Mimiviridae/clasificación , Mimiviridae/genética , Mimiviridae/ultraestructura , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Bosque Lluvioso , Análisis de Secuencia de ADN , Virión/ultraestructura
19.
Arch Virol ; 159(5): 1039-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24271007

RESUMEN

Amoebas of the genus Acanthamoeba are protists that are associated with human disease and represent a public health concern. They can harbor pathogenic microorganisms, acting as a platform for pathogen replication. Acanthamoeba polyphaga mimivirus (APMV), the type species of the genus Mimivirus, family Mimiviridae, represents the largest group of amoeba-associated viruses that has been described to date. Recent studies have demonstrated that APMV and other giant viruses may cause pneumonia. Amoebas can survive in most environments and tolerate various adverse conditions, including UV light irradiation, high concentrations of disinfectants, and a broad range of temperatures. However, it is unknown how the amoebal intracellular environment influences APMV stability and resistance to adverse conditions. Therefore, in this work, we evaluated the stability of APMV, either purified or carried by the amoeba host, under extreme conditions, including UV irradiation, heat and exposure to six different chemical biocides. After each treatment, the virus was titrated in amoebas using the TCID50 method. APMV was more stable in all resistance tests performed when located inside its host. Our results demonstrate that Acanthamoeba acts as a natural bunker for APMV, increasing viral resistance to extreme physical and chemical conditions. The data raise new questions regarding the survival of APMV in nature and in hospital environments.


Asunto(s)
Acanthamoeba/virología , Desinfectantes/farmacología , Calor , Mimiviridae/fisiología , Rayos Ultravioleta , Animales
20.
Mem Inst Oswaldo Cruz ; 109(3): 356-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24821059

RESUMEN

The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética , Mycobacterium tuberculosis/aislamiento & purificación , Micobacterias no Tuberculosas/aislamiento & purificación , ARN Ribosómico 16S/genética , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Humanos , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium tuberculosis/clasificación , Micobacterias no Tuberculosas/clasificación , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA