Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2220518120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903276

RESUMEN

Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.


Asunto(s)
Bacteriófago lambda , Cápside , Bacteriófago lambda/genética , Cápside/química , Temperatura , Microscopía por Crioelectrón , ADN Viral/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis
2.
Pharm Res ; 40(6): 1459-1477, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959413

RESUMEN

The present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile. However, as these techniques lack the sensitivity to detect biomolecule-related transitions, complementary characterization techniques such as small-angle scattering can provide valuable insights.


Asunto(s)
Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
Proc Natl Acad Sci U S A ; 117(45): 28026-28035, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093201

RESUMEN

The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the ß-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Biológicos , Periplasma/metabolismo , Pliegue de Proteína
4.
Adv Funct Mater ; 32(7)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35210986

RESUMEN

Peptide nucleic acids (PNAs) are nucleic acid analogs with superior hybridization properties and enzymatic stability than deoxyribonucleic acid (DNA). In addition to gene targeting applications, PNAs have garnered significant attention as bio-polymer due to the Watson-Crick -based molecular recognition and flexibility of synthesis. Here, we engineered PNA amphiphiles using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γPNA) amphiphiles self-assemble into spherical vesicles. Further, we formulate nano-assemblies using the amphiphilic γPNA as a polymer via ethanol injection-based protocols. We perform comprehensive head-on comparison of the physicochemical and cellular uptake properties of PNA derived self- and nano-assemblies. Small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) analysis reveal ellipsoidal morphology of γPNA nano-assemblies that results in superior cellular delivery compate to the spherical self-assembly. Next, we compare the functional activities of γPNA self-and nano-assemblies in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis-based assays. Overall, we establish that γPNA amphiphile is a functionally active bio-polymer to formulate nano-assemblies for a wide range of biomedical applications.

5.
Mol Pharm ; 18(12): 4459-4474, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34709831

RESUMEN

The aims of this work were to evaluate the effect of freezing and thawing stresses on lactate dehydrogenase (LDH) stability under three conditions. (i) In a solution buffered with sodium phosphate (NaP; 10 and 100 mM). The selective crystallization of disodium hydrogen phosphate during freezing caused a pronounced pH shift. (ii) In a solution buffered with histidine, where there was no pH shift due to buffer salt crystallization. (iii) At different concentrations of LDH so as to determine the self-stabilizing ability of LDH. The change in LDH tetrameric conformation was measured by small-angle neutron scattering (SANS). The pH of the phosphate buffer solutions was monitored as a function of temperature to quantify the pH shift. The conditions of buffer component crystallization from solution were identified using low-temperature X-ray diffractometry. Dynamic light scattering (DLS) enabled us to determine the effect of freeze-thawing on the protein aggregation behavior. LDH, at a high concentration (1000 µg/mL; buffer concentration 10 mM), has a pronounced self-stabilizing effect and did not aggregate after five freeze-thaw cycles. At lower LDH concentrations (10 and 100 µg/mL), only with the selection of an appropriate buffer, irreversible aggregation could be avoided. While SANS provided qualitative information with respect to protein conformation, the insights from DLS were quantitative with respect to the particle size of the aggregates. SANS is the only technique which can characterize the protein both in the frozen and thawed states.


Asunto(s)
Congelación , L-Lactato Deshidrogenasa/química , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Tampones (Química) , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Agregado de Proteínas , Conformación Proteica , Multimerización de Proteína , Soluciones
6.
Mol Pharm ; 18(1): 359-376, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33322901

RESUMEN

The respiratory syncytial virus (RSV) fusion (F) protein/polysorbate 80 (PS80) nanoparticle vaccine is the most clinically advanced vaccine for maternal immunization and protection of newborns against RSV infection. It is composed of a near-full-length RSV F glycoprotein, with an intact membrane domain, formulated into a stable nanoparticle with PS80 detergent. To understand the structural basis for the efficacy of the vaccine, a comprehensive study of its structure and hydrodynamic properties in solution was performed. Small-angle neutron scattering experiments indicate that the nanoparticle contains an average of 350 PS80 molecules, which form a cylindrical micellar core structure and five RSV F trimers that are arranged around the long axis of the PS80 core. All-atom models of full-length RSV F trimers were built from crystal structures of the soluble ectodomain and arranged around the long axis of the PS80 core, allowing for the generation of an ensemble of conformations that agree with small-angle neutron and X-ray scattering data as well as transmission electron microscopy (TEM) images. Furthermore, the hydrodynamic size of the RSV F nanoparticle was found to be modulated by the molar ratio of PS80 to protein, suggesting a mechanism for nanoparticle assembly involving addition of RSV F trimers to and growth along the long axis of the PS80 core. This study provides structural details of antigen presentation and conformation in the RSV F nanoparticle vaccine, helping to explain the induction of broad immunity and observed clinical efficacy. Small-angle scattering methods provide a general strategy to visualize surface glycoproteins from other pathogens and to structurally characterize nanoparticle vaccines.


Asunto(s)
Glicoproteínas/química , Nanopartículas/química , Vacunas contra Virus Sincitial Respiratorio/química , Virus Sincitial Respiratorio Humano/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Glicoproteínas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Vacunación/métodos
7.
Biochemistry ; 58(51): 5117-5134, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31793295

RESUMEN

Small-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1. This region, which bridges the N-terminal somatomedin B (SMB) domain with a large central ß-propeller domain of vitronectin, appears unstructured and has characteristics of an intrinsically disordered domain (IDD). The effect of osmolytes was evaluated using circular dichroism and SANS to explore the potential of the IDD to undergo a disorder-to-order transition. The results suggest that the IDD favors a more ordered structure under osmotic pressure; SANS shows a smaller radius of gyration (Rg) and a more compact fold of the IDD upon addition of osmolytes. To test whether PAI-1 binding is also coupled to folding within the IDD structure, a set of SANS experiments with contrast variation were performed on the complex of PAI-1 with a vitronectin fragment corresponding to the N-terminal 130 amino acids (denoted the SMB-IDD because it contains the SMB domain and IDD in linear sequence). Analysis of the SANS data using the Ensemble Optimization Method confirms that the SMB-IDD adopts a more compact configuration when bound to PAI-1. Calculated structures for the PAI-1:SMB-IDD complex suggest that the IDD provides an interaction surface outside of the primary PAI-1-binding site located within the SMB domain; this binding is proposed to lead to the assembly of higher-order structures of vitronectin and PAI-1 commonly found in tissues.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos
8.
Mol Pharm ; 16(10): 4319-4338, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31487466

RESUMEN

Excipients are substances that are added to therapeutic products to improve stability, bioavailability, and manufacturability. Undesirable protein-protein interactions (PPI) can lead to self-association and/or high solution viscosity in concentrated protein formulations that are typically greater than 50 mg/mL. Therefore, understanding the effects of excipients on nonspecific PPI is important for more efficient formulation development. In this study, we used National Institute of Standards and Technology monoclonal antibody (NISTmAb) reference material as a model antibody protein to examine the physical stability and viscosity of concentrated formulations using a series of excipients, by varying pH, salt composition, and the presence of cosolutes including amino acids, sugars, and nonionic surfactants. Small angle X-ray scattering (SAXS) together with differential scanning calorimetry (DSC), dynamic light scattering (DLS), and viscosity measurements were used to obtain various experimental parameters to characterize excipient modulated PPI and bulk solution viscosities. In particular, a good correlation was found between SAXS and DLS/SLS results, suggesting that the use of DLS/SLS is valid for predicting the colloidal stability of NISTmAb in concentrated solutions. Moreover, further analysis of effective structure factor S(q)eff measured from SAXS enabled the dissection of net PPI into hydrodynamic forces due to excluded volume as well as any additional attractive or repulsive interactions with the presence of excipients. It was found that although no denaturation or aggregation of NISTmAb was observed and that the net PPI were repulsive, the use of ionic excipients such as pH and salts leads to increased short-range attraction, whereas the nonionic excipients including sugars, amino acids, and polysorbate surfactants lead to increased repulsive PPI with increasing protein concentration. Results obtained from viscosity measurements showed that the use of excipients can lead to increased solution viscosities at high protein concentrations. The use of S(q)eff, interaction parameter kD, and second virial coefficient B22 as predictors for solution viscosity was also evaluated by comparing the predicted results with the measured viscosities. Although B22 and S(q)eff appeared to be better predictors than kD, disagreement between the predicted and measured results suggests other factors apart from PPI contribute to the bulk rheological properties of concentrated protein solutions.


Asunto(s)
Anticuerpos Monoclonales/química , Excipientes/química , Inmunoglobulina G/química , Estabilidad Proteica , Dispersión del Ángulo Pequeño , Aminoácidos/química , Humanos , Hidrodinámica , Concentración de Iones de Hidrógeno , Modelos Moleculares , Concentración Osmolar , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Sales (Química)/química , Azúcares/química , Viscosidad , Difracción de Rayos X
9.
Anal Bioanal Chem ; 410(8): 2161-2171, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29423596

RESUMEN

Protein-protein interactions in monoclonal antibody solutions are important for the stability of a therapeutic drug and directly influence viscosity in concentrated protein solutions. This study describes the use of small-angle scattering to estimate protein-protein interactions at high concentrations of the IgG1 NISTmAb reference material and validate colloidal models for interacting molecules. In particular, we studied the colloidal stability of the NISTmAb at high protein concentrations and analyzed protein-protein interactions upon adding sodium chloride and its effect on viscosity. Isotropic colloidal models for interacting molecules were combined with an ensemble of atomistic structures from molecular simulation to account for the flexibility of the NISTmAb in solution. In histidine formulation buffer, net repulsive electrostatic interactions are important for the colloidal stability of the NISTmAb at high concentrations. Addition of sodium chloride increased the viscosity of the NISTmAb and decreased the colloidal stability due to charge screening of the repulsive interactions. The interactions at high concentrations (up to ~ 250 mg/mL) were consistent with those from light scattering at low concentrations (below ~ 20 mg/mL). However, in the presence of sodium chloride, the screening of charges was less pronounced with increasing protein concentration and the interactions approached those of the repulsive hard-sphere models. Additionally, we studied the NISTmAb under frozen conditions using in situ neutron scattering to analyze the crowded state as proteins are excluded from the water-rich phase. In the frozen samples, where protein concentration can reach hundreds of mg/mL in the protein-rich phase, sodium chloride did not affect the molecular spacing and crowding of the NISTmAb. Graphical Abstract Net repulsive interactions in concentrated NISTmAb solutions assessed by small-angle neutronscattering.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Tampones (Química) , Congelación , Histidina , Humanos , Difracción de Neutrones/métodos , Difracción de Neutrones/normas , Estándares de Referencia , Dispersión del Ángulo Pequeño , Soluciones , Viscosidad
10.
Adv Exp Med Biol ; 1009: 65-85, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29218554

RESUMEN

Solution small-angle neutron scattering (SANS) combined with contrast variation provides information about the size and shape of individual components of a multi-component biological assembly, as well as the spatial arrangements between the components. The large difference in the neutron scattering properties between hydrogen and deuterium is key to the method. Isotopic substitution of deuterium for some or all of the hydrogen in either the molecule or the solvent can greatly alter the scattering properties of the biological assembly, often with little or no change to its biochemical properties. Thus, SANS with contrast variation provides unique information not easily obtained using other experimental techniques.If used correctly, SANS with contrast variation is a powerful tool for determining the solution structure of multi-component biological assemblies. This chapter discusses the principles of SANS theory that are important for contrast variation, essential considerations for experiment design and execution, and the proper approach to data analysis and structure modeling. As sample quality is extremely important for a successful contrast variation experiment, sample issues that can affect the outcome of the experiment are discussed as well as procedures used to verify the sample quality. The described methodology is focused on two-component biological complexes. However, examples of its use for multi-component assemblies are also discussed.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Difracción de Neutrones/métodos , Ácidos Nucleicos/ultraestructura , Proteínas/ultraestructura , Dispersión del Ángulo Pequeño , Simulación por Computador , Exactitud de los Datos , Deuterio/química , Humanos , Hidrógeno/química , Modelos Moleculares , Conformación Molecular , Difracción de Neutrones/instrumentación , Ácidos Nucleicos/química , Proteínas/química , Proyectos de Investigación
11.
Phys Chem Chem Phys ; 18(8): 5771-88, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26422168

RESUMEN

Polyubiquitination is a critical protein post-translational modification involved in a variety of processes in eukaryotic cells. The molecular basis for selective recognition of the polyubiquitin signals by cellular receptors is determined by the conformations polyubiquitin chains adopt; this has been demonstrated for K48- and K63-linked chains. Recent studies of the so-called non-canonical chains (linked via K6, K11, K27, K29, or K33) suggest they play important regulatory roles in growth, development, and immune system pathways, but biophysical studies are needed to elucidate the physical/structural basis of their interactions with receptors. A first step towards this goal is characterization of the conformations these chains adopt in solution. We assembled diubiquitins (Ub2) comprised of every lysine linkage. Using solution NMR measurements, small-angle neutron scattering (SANS), and in silico ensemble generation, we determined population-weighted conformational ensembles that shed light on the structure and dynamics of the non-canonical polyubiquitin chains. We found that polyubiquitin is conformationally heterogeneous, and each chain type exhibits unique conformational ensembles. For example, K6-Ub2 and K11-Ub2 (at physiological salt concentration) are in dynamic equilibrium between at least two conformers, where one exhibits a unique Ub/Ub interface, distinct from that observed in K48-Ub2 but similar to crystal structures of these chains. Conformers for K29-Ub2 and K33-Ub2 resemble recent crystal structures in the ligand-bound state. Remarkably, a number of diubiquitins adopt conformers similar to K48-Ub2 or K63-Ub2, suggesting potential overlap of biological function among different lysine linkages. These studies highlight the potential power of determining function from elucidation of conformational states.


Asunto(s)
Modelos Moleculares , Poliubiquitina/química , Lisina/química , Espectroscopía de Resonancia Magnética , Conformación Proteica , Ubiquitinación
12.
J Struct Biol ; 190(1): 81-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25449314

RESUMEN

Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in controlling growth and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, there is limited information on the quaternary structure of LRAP. Here, sedimentation velocity analytical ultracentrifugation (SV) and small angle neutron scattering (SANS) were used to study the tertiary and quaternary structure of LRAP at various pH values, ionic strengths, and concentrations. We found that the monomer is the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7-4.1, pH 4.5-8, 50 mmol/L(mM) to 200 mM NaCl, 0.065-2 mg/mL). The monomer is also the dominant species for unphosphorylated LRAP (LRAP(-P)) at pH 7.4 and for LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregates in a narrow pH range near the isoelectric point of pH 4.1. SV and SANS show that the LRAP monomer has a radius of ∼2.0 nm and an asymmetric structure, and solution NMR studies indicate that the monomer is largely unstructured. This work provides new insights into the secondary, tertiary, and quaternary structure of LRAP in solution and provides evidence that the monomeric species may be an important functional form of some amelogenins.


Asunto(s)
Proteínas del Esmalte Dental/química , Animales , Concentración de Iones de Hidrógeno , Ratones , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Soluciones
14.
Proteins ; 82(10): 2364-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24810534

RESUMEN

The solution structure of the full-length DNA helicase minichromosome maintenance protein from Methanothermobacter thermautotrophicus was determined by small-angle neutron scattering (SANS) data together with all-atom molecular modeling. The data were fit best with a dodecamer (dimer of hexamers). The 12 monomers were linked together by the B/C domains, and the adenosine triphosphatase (AAA+) catalytic regions were found to be freely movable in the full-length dodecamer both in the presence and absence of Mg(2+) and 50-meric single-stranded DNA (ssDNA). In particular, the SANS data and molecular modeling indicate that all 12 AAA+ domains in the dodecamer lie approximately the same distance from the axis of the molecule, but the positions of the helix-turn-helix region at the C-terminus of each monomer differ. In addition, the A domain at the N-terminus of each monomer is tucked up next to the AAA+ domain for all 12 monomers of the dodecamer. Finally, binding of ssDNA does not lock the AAA+ domains in any specific position, which leaves them with the flexibility to move both for helicase function and for binding along the ssDNA.


Asunto(s)
Proteínas Arqueales/química , ADN Helicasas/química , Methanobacteriaceae/metabolismo , Modelos Moleculares , Dispersión del Ángulo Pequeño , Secuencia de Aminoácidos , ADN de Cadena Simple/química , Methanobacteriaceae/crecimiento & desarrollo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Conformación Proteica , Soluciones
15.
J Inorg Biochem ; 257: 112579, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703512

RESUMEN

Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.


Asunto(s)
Aromatasa , Dispersión del Ángulo Pequeño , Aromatasa/metabolismo , Aromatasa/química , Humanos , Lipoproteínas/química , Lipoproteínas/metabolismo , Difracción de Rayos X , Nanoestructuras/química , Simulación de Dinámica Molecular
16.
ACS Nano ; 18(2): 1464-1476, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175970

RESUMEN

The mRNA technology has emerged as a rapid modality to develop vaccines during pandemic situations with the potential to protect against endemic diseases. The success of mRNA in producing an antigen is dependent on the ability to deliver mRNA to the cells using a vehicle, which typically consists of a lipid nanoparticle (LNP). Self-amplifying mRNA (SAM) is a synthetic mRNA platform that, besides encoding for the antigen of interest, includes the replication machinery for mRNA amplification in the cells. Thus, SAM can generate many antigen encoding mRNA copies and prolong expression of the antigen with lower doses than those required for conventional mRNA. This work describes the morphology of LNPs containing encapsulated SAM (SAM LNPs), with SAM being three to four times larger than conventional mRNA. We show evidence that SAM changes its conformational structure when encapsulated in LNPs, becoming more compact than the free SAM form. A characteristic "bleb" structure is observed in SAM LNPs, which consists of a lipid-rich core and an aqueous RNA-rich core, both surrounded by a DSPC-rich lipid shell. We used SANS and SAXS data to confirm that the prevalent morphology of the LNP consists of two-core compartments where components are heterogeneously distributed between the two cores and the shell. A capped cylinder core-shell model with two interior compartments was built to capture the overall morphology of the LNP. These findings provide evidence that bleb two-compartment structures can be a representative morphology in SAM LNPs and highlight the need for additional studies that elucidate the role of spherical and bleb morphologies, their mechanisms of formation, and the parameters that lead to a particular morphology for a rational design of LNPs for mRNA delivery.


Asunto(s)
Liposomas , Nanopartículas , ARN Mensajero/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , Lípidos/química , ARN Interferente Pequeño/química
18.
J Pharm Sci ; 112(1): 76-82, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995205

RESUMEN

Protein structural changes during freezing and subsequent thawing are of great importance to a variety of biopharmaceutical applications. In this work, we studied the influence of non-ionic surfactants (polysorbate 20 and poloxamer 188) on protein structural changes during freeze and thaw using lysozyme as a model protein. Small-angle neutron scattering was employed to characterize protein structures in both liquid and frozen solution states. The results show minimal impact of polysorbate 20 on lysozyme structures during freeze and thaw using practically relevant concentrations. Polysorbate 20 used at 0.04% (w/w) completely prevents freeze-induced aggregation of lysozyme. Poloxamer 188 seems to interact with lysozyme; when applied at high concentrations (10% w/w), such interaction prevents protein crowding or close packing typically associated with freeze concentration. Despite such interactions, lysozyme aggregation is observed with 10% (w/w) of poloxamer 188 during freezing, although the aggregation is reversed upon thawing.


Asunto(s)
Poloxámero , Polisorbatos , Poloxámero/química , Tensoactivos/química , Congelación , Muramidasa/química , Dispersión del Ángulo Pequeño , Proteínas
19.
ACS Macro Lett ; 12(7): 993-998, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37406157

RESUMEN

We report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae. Monomers are miscible with DPPC and DPPG initially, while polymerization drives polymers to the DHPC-rich domain, resulting in a polymer nanoweb supported by the outcomes of small angle neutron scattering, differential scanning calorimetry, and transmission electron microscopy.

20.
Int J Popul Data Sci ; 8(1): 2165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38414545

RESUMEN

Introduction: Trusted research environments (TREs) provide secure access to very sensitive data for research. All TREs operate manual checks on outputs to ensure there is no residual disclosure risk. Machine learning (ML) models require very large amount of data; if this data is personal, the TRE is a well-established data management solution. However, ML models present novel disclosure risks, in both type and scale. Objectives: As part of a series on ML disclosure risk in TREs, this article is intended to introduce TRE managers to the conceptual problems and work being done to address them. Methods: We demonstrate how ML models present a qualitatively different type of disclosure risk, compared to traditional statistical outputs. These arise from both the nature and the scale of ML modelling. Results: We show that there are a large number of unresolved issues, although there is progress in many areas. We show where areas of uncertainty remain, as well as remedial responses available to TREs. Conclusions: At this stage, disclosure checking of ML models is very much a specialist activity. However, TRE managers need a basic awareness of the potential risk in ML models to enable them to make sensible decisions on using TREs for ML model development.


Asunto(s)
Revelación , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA