Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 483: 116832, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266872

RESUMEN

Iron deficiency anemia is caused by many pathological conditions like chronic kidney disease (CKD), inflammation, malnutrition and gastrointestinal abnormality. Current treatments that are erythropoiesis stimulating agents (ESAs) and iron supplementation are inadequate and often lead to tolerance and/or toxicity. Desidustat, a prolyl hydroxylase (PHD) inhibitor, is clinically used for the treatment of anemia with CKD. In this study, we investigated the effect of desidustat on iron deficiency anemia (IDA). IDA was induced in C57BL6/J mice by iron deficient diet feeding. These mice were then treated with desidustat (15 mg/kg, PO) and FeSO4 (20 mg/kg) for five weeks and effect of the treatment on hematology, iron homeostasis, and bone marrow histology was observed. Effect of desidustat on iron metabolism in inflammation (LPS)-induced iron deficiency was also assessed. Both, Desidustat and FeSO4, increased MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), hemoglobin, and HCT (hematocrit) in blood and increased iron in serum, liver, and spleen. Desidustat increased MCHC (mean corpuscular hemoglobin concentration) while FeSO4 treatment did not alter it. FeSO4 treatment significantly increased iron deposition in liver, and spleen, while desidustat increased iron in circulation and demonstrated efficient iron utilization. Desidustat increased iron absorption, serum iron and decreased hepcidin without altering tissue iron, while FeSO4 increased serum and tissue iron by increasing hepcidin in LPS-induced iron deficiency. Desidustat increased erythroid population, especially iron-dependent polychromatic normoblasts and orthochromatic normoblasts, while FeSO4 did not improve cell architecture. PHD inhibition by desidustat improved iron utilization in iron deficiency anemia, by efficient erythropoiesis.


Asunto(s)
Anemia Ferropénica , Inhibidores de Prolil-Hidroxilasa , Quinolonas , Insuficiencia Renal Crónica , Ratones , Animales , Anemia Ferropénica/tratamiento farmacológico , Hepcidinas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Lipopolisacáridos , Hierro/metabolismo , Inflamación/metabolismo , Hemoglobinas/análisis
2.
Toxicol Appl Pharmacol ; 434: 115825, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902352

RESUMEN

Dyslipidemia or its severe version like familial hypercholesterolemia causes a high risk for cardiovascular diseases. Lomitapide, a microsomal triglyceride transfer protein inhibitor, is approved to treat familial hypercholesterolemia, associated with liver fat accumulation. In this work, we investigated the effect of the combination of lomitapide and triiodothyronine (T3) in Zucker fatty rats. Lomitapide (1 mg/kg, PO), or T3 (13 µg/kg, PO), or their combination, were given to these rats once daily for fourteen days. Body weight and food intake were recorded once daily during the treatment period. Serum and hepatic lipids, glucose tolerance, serum aminotransferases, bile fluids, hepatic gene expression, and liver histology were assessed at the end of the treatment. Lomitapide treatment reduced body weight, food intake, glucose intolerance, and serum lipids, and elevated serum aminotransferases and liver lipids. When combined with T3, lomitapide showed an enhanced reduction in body weight, food intake, serum cholesterol, serum LDL, and glucose intolerance. The combination treatment increased bile flow rate and biliary cholesterol excretion rate. Combining T3 with lomitapide attenuated the elevation of serum aminotransferases and liver lipids. Hepatic ABCB11, ABCG5, ABCG8, CYP7A1, CPT1, and ACOX1 expressions were increased with combination treatment. Histological analysis indicated that T3 attenuated hepatic fat accumulation caused by lomitapide. These data suggests that combining lomitapide with T3 may reduce lomitapide-induced hepatic toxicity and provide additional benefits in obesity and glucose intolerance.


Asunto(s)
Bencimidazoles/toxicidad , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Triyodotironina/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratas , Ratas Zucker
3.
Bioorg Med Chem Lett ; 53: 128421, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718128

RESUMEN

Amino acid restriction by inhibition of neutral amino acid transporter, B0AT1 (SLC6A19) activity has been recently shown to improve glyceamic control by upregulating glucagon like peptide (GLP1) and fibroblast growth factor (FGF21) in mice. Hence, pharmacological inhibition of B0AT1 is expected to treat type-2 diabetes and related disorder. In this study, rationally designed trifluoromethyl sulfonyl derivatives were identified as novel, potent and orally bioavailable B0AT1 inhibitors. Compound 39 was found to be nanomolar potent (IC50: 0.035 µM) B0AT1 inhibitor with excellent pharmacokinetic profile (%F: 66) in mice and efficacious in vivo in diet induced obese (DIO) mice model.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/farmacología , Descubrimiento de Drogas , Sulfonamidas/farmacología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/química
4.
Drug Dev Res ; 82(6): 852-860, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33480036

RESUMEN

Chronic kidney disease (CKD) is associated with activated inflammatory responses. Desidustat, a prolyl hydroxylase (PHD) inhibitor is useful for treatment of anemia associated with CKD, but its effect on the inflammatory and fibrotic changes in CKD is not evaluated. In this study, we investigated the effect of desidustat on the inflammatory and fibrotic changes in preclinical models of acute and chronic kidney injury. Acute kidney injury was induced in male Sprague Dawley rats by ischemia-reperfusion, in which effect of desidustat (15 mg/kg, PO) was estimated. In a separate experiment, male C57 mice were treated with adenine for 14 days to induce CKD. These mice were treated with desidustat (15 mg/kg, PO, alternate day) treatment for 14 days, with adenine continued. Desidustat prevented elevation of serum creatinine, urea, IL-1ß, IL-6, and kidney injury molecule-1 (KIM-1), and elevated the erythropoietin levels in rats that were subjected to acute kidney injury. Mice treated with adenine developed CKD and anemia, and desidustat treatment caused improvement in serum creatinine, urea, and also improved hemoglobin and reduced hepatic and serum hepcidin. A significant reduction in IL-1ß, IL-6, myeloperoxidase (MPO) and oxidative stress was observed by desidustat treatment. Desidustat treatment also reduced renal fibrosis as observed by histological analysis and hydroxyproline content. Desidustat treatment reduced the renal fibrosis and inflammation along with a reduction in anemia in preclinical models of kidney injury, which may translate to protective effects in CKD patients.


Asunto(s)
Inhibidores de Prolil-Hidroxilasa , Quinolonas , Daño por Reperfusión , Animales , Citocinas/metabolismo , Riñón , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Inhibidores de Prolil-Hidroxilasa/farmacología , Quinolonas/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología
5.
Can J Physiol Pharmacol ; 96(6): 587-596, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29406832

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. Coagonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) are under clinical investigation for the treatment of obesity and type 2 diabetes. In this study, we have demonstrated the effect of a balanced coagonist in the treatment of NAFLD using mouse models. GLP-1R agonist exendin-4, glucagon, and coagonist (Aib2 C24 chimera2) were administered to C57BL6/J mice, in which NAFLD was induced by carbon tetrachloride (CCl4) treatment after high-fat diet (HFD) feeding, and choline-deficient, L-amino-acid-defined HFD (CDAHFD) feeding. Repeated dose administration of coagonist significantly attenuated liver inflammation and steatosis induced by acute and long-term treatment with CCl4 in HFD-fed mice. Coagonist markedly attenuated the CDAHFD-induced expression of TIMP-1, MMP-9, TNF-α, MCP-1, COL1A1, and α-SMA. It also inhibited progression of hepatic steatosis and fibrosis in mice. Exendin-4 was better than glucagon, but coagonist was most effective in reduction of hepatic inflammation as well as steatosis. Coagonist of GLP-1R and GCGR improved NAFLD in C57BL6/J mice. This effect is mediated by reduction in lipotoxicity and inflammation in liver.


Asunto(s)
Péptido 1 Similar al Glucagón/agonistas , Glucagón/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Péptidos/farmacología , Receptores de Glucagón/agonistas , Ponzoñas/farmacología , Animales , Exenatida , Glucagón/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Péptidos/uso terapéutico , Ponzoñas/uso terapéutico
6.
Xenobiotica ; 48(1): 37-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28042744

RESUMEN

1. ZYAN1 is a prolyl hydroxylase inhibitor in clinical development for treatment of anemia associated with chronic kidney disease (CKD). We evaluated the effect of acute and chronic kidney impairment on the pharmacokinetics of ZYAN1 in rat models. 2. Cisplatin (2.5, 5 and 7.5 mg/kg) was used to induce acute kidney injury (AKI), and five-sixth and total nephrectomy was used to induce chronic kidney injury (CKI) in male Wistar rats. All groups received a single 15 mg/kg oral dose of ZYAN1. Blood/urine samples were analyzed for ZYAN1 to assess peak concentration (Cmax), area under the concentration-time curve (AUCinf), total body clearance (CL/F) and elimination half-life (T1/2). 3. Cmax and AUCinf were not significantly different in the various AKI groups or in five-sixth nephrectomized rats, as compared to control rats. Recovery of ZYAN1 in urine was reduced; the impact on the CL/F was minimal. There was a 2-fold increase in AUCinf with reduction in CL/F in total nephrectomized rats. T1/2 was longer for ZYAN1 in the severe AKI/five-sixth nephrectomy rats and total nephrectomy rats as compared to control rats. 4. Based on the rodent data it may be inferred that PK of ZYAN1 in CKD patients may be minimally affected.


Asunto(s)
Fallo Renal Crónico/metabolismo , Quinolonas/farmacocinética , Anemia/complicaciones , Anemia/tratamiento farmacológico , Animales , Masculino , Quinolonas/uso terapéutico , Ratas , Ratas Wistar
7.
Can J Physiol Pharmacol ; 94(2): 161-167, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26629909

RESUMEN

Glucagon-like peptide-1 (GLP-1) receptor agonists modulate lipid metabolism, apart from controlling glucose homeostasis. We investigated the role of central GLP-1 receptor (GLP-1R) agonism in regulation of hepatic lipid metabolism in cholesterol-fed hamsters. Cholesterol-fed hamsters were treated by intracerebroventricular (i.c.v.) route with exendin-4, as acute or repeated dose regimen and compared with hamsters pair-fed to the exendin-treated hamsters and with hamsters co-treated with GLP-1 antagonist exendin-9. Effect of acute treatment was observed on food intake, tyloxapol-induced hypertriglyceridemia, and corn oil induced post prandial lipemia. Plasma and hepatic lipids and changes in the expression of hepatic genes involved in lipid metabolism were assessed after chronic administration. Acute, as well as repeated dose, treatment of exendin-4 showed significant changes in hepatic lipids, circulating fatty acids, triglycerides, LDL, and cholesterol. Expression of SREBP-1c was reduced while that of LDLR and CYP7A1 was increased after the repeated dose treatment, and there was no change in HMG CoA reductase. These changes were blocked by co-treatment of exendin-9, and not replicated by pair feeding to the significant extent. Central GLP-1 receptor activation showed profound effects on peripheral lipid metabolism, which were partially independent of its effect on food intake.

8.
Can J Physiol Pharmacol ; 92(12): 975-83, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25361428

RESUMEN

Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.


Asunto(s)
Fármacos Antiobesidad/farmacología , Péptido 1 Similar al Glucagón/agonistas , Glucagón/metabolismo , Obesidad/tratamiento farmacológico , Péptidos/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Ponzoñas/farmacología , Animales , Fármacos Antiobesidad/uso terapéutico , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Sinergismo Farmacológico , Ingestión de Alimentos/efectos de los fármacos , Exenatida , Péptido 1 Similar al Glucagón/metabolismo , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/fisiopatología , Péptidos/uso terapéutico , Piperidinas/uso terapéutico , Pirazoles/uso terapéutico , Receptor Cannabinoide CB1/metabolismo , Rimonabant , Ponzoñas/uso terapéutico
9.
Int Immunopharmacol ; 142(Pt A): 113029, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216116

RESUMEN

Autoimmune hemolytic anemia (AIHA) is a heterogeneous group of diseases mediated by autoantibody directed against RBCs causing hemolysis and anemia. AIHA develops rapidly or over time, depending on the triggering factor. Desidustat is a prolyl hydroxylase inhibitor clinically used for the treatment of chronic kidney disease (CKD)-induced anemia. In this study, we investigated the effect of desidustat in preclinical model of AIHA. We used rat RBC for induction of AIHA in mice. These mice were then treated with desidustat (15 mg/kg, PO, once a day) for eight weeks. Desidustat treatment increased hemoglobin, RBC and hematocrit and decreased WBC and lymphocytes. This treatment suppressed serum LDH, oxidative stress in RBCs, antibody titer and antibody deposition on RBC surface, and increased RBC lifespan. Serum and spleen iron along with spleen mass and oxidative stress were decreased by desidustat. Bone marrow iron was increased and expression of CD71 (cell surface marker for early erythroid progenitor) and TER-119 (cell surface marker for late erythroid progenitor) in bone marrow were found to be elevated by desidustat by treatment. This treatment also suppressed deposition of membrane-bound antibody in late erythroid cells. The treatment showed reduction in total splenic cells, CD71 and TER-119 positive cells in the spleen. Thus, desidustat treatment increased erythropoiesis, early maturation of bone marrow erythroid cells having longer RBC life span due to decrease in the antibody-mediated lysis of RBCs and its progenitors leading to reduced oxidative stress. Thus, desidustat can be a good therapeutic option for treatment of AIHA.

10.
Drug Res (Stuttg) ; 74(7): 325-334, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991528

RESUMEN

Complement cascade is a defence mechanism useful for eliminating pathogenic microorganisms and damaged cells. However, activation of alternative complement system can also cause inflammation and promote kidney and retinal disease progression. Inflammation causes tissue hypoxia, which induces hypoxia-inducible factor (HIF) and HIF helps the body to adapt to inflammation. In this study, we investigated the effect of HIF stabilizer desidustat in complement-mediated diseases. Oral administration of desidustat (15 mg/kg) was effective to reduce the kidney injury in mice that was induced by either lipopolysaccharide (LPS), doxorubicin or bovine serum albumin (BSA)-overload. Complement activation-induced membrane attack complex (MAC) formation and factor B activity were also reduced by desidustat treatment. In addition, desidustat was effective against membranous nephropathy caused by cationic BSA and retinal degeneration induced by sodium iodate in mice. C3-deposition, proteinuria, malondialdehyde, and interleukin-1ß were decreased and superoxide dismutase was increased by desidustat treatment in cBSA-induced membranous nephropathy. Desidustat specifically inhibited alternative complement system, without affecting the lectin-, or classical complement pathway. This effect appears to be mediated by inhibition of factor B. These data demonstrate the potential therapeutic value of HIF stabilization by desidustat in treatment of complement-mediated diseases.


Asunto(s)
Activación de Complemento , Animales , Ratones , Activación de Complemento/efectos de los fármacos , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/metabolismo , Glomerulonefritis Membranosa/patología , Masculino , Lipopolisacáridos , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/prevención & control , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Albúmina Sérica Bovina , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Interleucina-1beta/metabolismo , Sustancias Protectoras/farmacología
11.
Can J Physiol Pharmacol ; 91(12): 1009-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24289070

RESUMEN

Dual agonism of glucagon and glucagon-like peptide-1 (GLP-1) receptors reduce body weight without inducing hyperglycemia in rodents. However, the effect of a co-agonist on insulin sensitivity and lipid metabolism has not been thoroughly assessed. Diet-induced obese (DIO) mice received 0.5 mg·kg(-1) of co-agonist or 2.5 mg·kg(-1) of glucagon or 8 µg·kg(-1) of exendin-4 by subcutaneous route, twice daily, for 28 days. A separate group of mice was pair-fed to the co-agonist-treated group for 28 days. Co-agonist treatment reduced food intake and reduced body weight up to 28 days. In addition, it reduced leptin levels and increased fibroblast growth factor 21 (FGF21) levels in plasma, when compared with control and pair-fed groups. Co-agonist treatment decreased triglyceride levels in serum and liver and reduced serum cholesterol, mainly due to reduction in low-density lipoprotein (LDL) cholesterol. These changes were not seen with pair-fed controls. Co-agonist treatment improved glucose tolerance and increased insulin sensitivity, as observed during glucose and insulin-tolerance test, hyperinsulinemic clamp, and reduced gluconeogenesis, as observed in pyruvate-tolerance test. The effects on insulin sensitivity and lipid levels are mostly independent of the food intake or body weight lowering effect of the co-agonist.


Asunto(s)
Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Péptido 1 Similar al Glucagón/agonistas , Glucagón/agonistas , Resistencia a la Insulina/fisiología , Animales , Colesterol/metabolismo , LDL-Colesterol/sangre , LDL-Colesterol/metabolismo , Dieta , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Gluconeogénesis/efectos de los fármacos , Leptina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
12.
Bioorg Med Chem Lett ; 22(10): 3516-21, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22503246

RESUMEN

Pyrrolidine based peptidomimetics are reported as potent and selective DPP-IV inhibitors for the treatment of T2DM. Compounds 16c and 16d showed excellent in vitro potency and selectivity towards DPP-IV and the lead compound 16c showed sustained antihyperglycemic effects, along with improved pharmacokinetic profile.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipoglucemiantes/farmacología , Peptidomiméticos/farmacología , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacocinética , Ratones , Ratones Endogámicos C57BL , Peptidomiméticos/farmacocinética
13.
Clin Exp Pharmacol Physiol ; 39(1): 69-77, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22060140

RESUMEN

1. One of the major causes of metabolic syndrome is elevated 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) in the liver and adipose tissue. High 11ß-HSD1 expression contributes significantly to the diabetic phenotype in db/db mice. The purpose of the present study was to test the effect of the pharmacological inhibition of 11ß-HSD1 inhibition by carbenoxolone in db/db mice, a genetic model of diabetes. 2. Inhibition of 11ß-HSD1 by carbenoxolone was evaluated in liver homogenates obtained from untreated mice. At 0.4, 0.8, 1.6 and 3.2 µmol/L, carbenoxolone reduced the conversion of cortisone to cortisol by 21%, 48%, 82% and 95%, respectively. 3. In another series of experiments in which female db/db mice were dosed orally with carbenoxolone (10, 25 and 50 mg/kg, twice daily) for 10 days, dose-dependent decreases were observed in 11ß-HSD1 activity in the brain, adipose and liver. In the case of 10 mg/kg carbenoxolone, the effects were not significant. In addition, the bodyweight of female db/db mice was reduced by 10% and 13% following treatment with 10 and 50 mg/kg carbenoxolone, respectively. Carbenoxolone treatment dose-dependently improved fat mass, energy expenditure, the serum lipid profile, serum leptin and insulin and glucose tolerance. Furthermore, 50 mg/kg carbenoxolone reduced both phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) activity in the liver by 75% and 52%, respectively. These decreases were associated with increased glucokinase protein expression and activity in the liver. 4. Carbenoxolone inhibition of 11ß-HSD1 in the liver, adipose and brain significantly improves the symptoms of metabolic syndrome in db/db mice. These improvements can be attributed to increased energy expenditure, decreased activity of the gluconeogenic enzymes PEPCK and G6Pase in the liver and improved glucokinase function in the liver and pancreas.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Fármacos Antiobesidad/uso terapéutico , Carbenoxolona/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Resistencia a la Insulina , Obesidad/prevención & control , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Adiposidad/efectos de los fármacos , Animales , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Carbenoxolona/administración & dosificación , Carbenoxolona/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Femenino , Glucosa-6-Fosfatasa/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Hígado/efectos de los fármacos , Hígado/enzimología , Síndrome Metabólico/prevención & control , Ratones , Ratones Mutantes , Obesidad/etiología , Páncreas/efectos de los fármacos , Páncreas/enzimología , Páncreas/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo
14.
Basic Clin Pharmacol Toxicol ; 130(1): 35-43, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34634192

RESUMEN

Inhibiting the intestinal and renal neutral amino acid transporter B0AT1 by genetic means has improved insulin sensitivity in mice, but there are no antagonists available for preclinical or clinical use. Since the anti-inflammatory agent nimesulide selectively inhibited B0AT1 in vitro, we hypothesized that nimesulide exhibits in vivo potential to restrict neutral amino acid absorption and, therefore, may improve insulin sensitivity. The dose-related effect of nimesulide (10 to 100 mg/kg, PO) on intestinal absorption of neutral amino acids was estimated in C57 mice. The effect of nimesulide (50 mg/kg, PO) on renal resorption of amino acids was also assessed. The effect of chronic nimesulide (50 mg/kg, PO, BID for 14 days) was assessed in high protein diet-fed C57 mice, diet-induced obese mice and obese and diabetic db/db mice. Acute and chronic nimesulide treatment decreased absorption of neutral amino acids and increased their urinary excretion. Nimesulide treatment improved insulin sensitivity and glycemic control, increased GLP-1, decreased liver lipids and improved FGF-21 in serum. Nimesulide improved insulin sensitivity and glucose tolerance by inhibiting neutral amino acid transport in the intestine and kidneys. Thus, it can serve as a tool compound for in vivo B0AT1 inhibition.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Aminoácidos/metabolismo , Hipoglucemiantes/farmacología , Sulfonamidas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Factores de Crecimiento de Fibroblastos/sangre , Hipoglucemiantes/administración & dosificación , Resistencia a la Insulina , Absorción Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Sulfonamidas/administración & dosificación
15.
Artículo en Inglés | MEDLINE | ID: mdl-35570856

RESUMEN

Many anemic chronic kidney disease (CKD) patients are refractory to erythropoietin (EPO) effects due to inflammation, deranged iron utilization, and generation of EPO antibodies. This work assessed the effect of desidustat, an inhibitor of hypoxia inducible factor (HIF) prolyl hydroxylase (PHD), on EPO-refractory renal anemia. Sprague Dawley rats were made anemic by cisplatin (5 â€‹mg/kg, IP, single dose) and turpentine oil (5 â€‹mL/kg, SC, once a week). These rats were given recombinant human EPO (rhEPO, 1 â€‹µg/kg) and desidustat (15 or 30 â€‹mg/kg) for eight weeks. Separately, rhEPO (1-5 â€‹µg/kg) was given to anemic rats to sustain the normal hemoglobin levels and desidustat (15 â€‹mg/kg) for eight weeks. In another experiment, the anemic rats were treated rhEPO (5 â€‹µg/kg) for two weeks and then desidustat (15 â€‹mg/kg) for the next two weeks. Dosing of rhEPO was thrice a week, and for desidustat, it was on alternate days. Desidustat inhibited EPO-resistance caused by rhEPO treatment, decreased hepcidin, IL-6, IL-1ß, and increased iron and liver ferroportin. Desidustat reduced EPO requirement and anti-EPO antibodies. Desidustat also maintained normal hemoglobin levels after cessation of rhEPO treatment. Thus, novel prolyl hydroxylase inhibitor desidustat can treat EPO resistance via improved iron utilization and decreased inflammation.

16.
Clin Exp Pharmacol Physiol ; 38(5): 338-44, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21401695

RESUMEN

1. Insulin-resistant states are commonly associated with a significantly higher risk of atherosclerosis. Insulin resistance has also been correlated with enhanced very low-density lipoprotein (VLDL) production, which is exacerbated by increased intestinal lipid synthesis and insulin-stimulated de novo lipogenesis. Microsomal triglyceride transfer protein (MTP) catalyses the critical step in the synthesis and secretion of VLDL and chylomicrons. The purpose of the present study was to test the hypothesis that chronic inhibition of MTP with a small molecule inhibitor would improve insulin sensitivity and reduce atherogenic risk in a genetic model of diabetic dyslipidaemia. 2. The in vivo activity of BMS-201038, a potent inhibitor of MTP, was evaluated in a model of hypertriglyceridemia induced by Triton WR1339 and corn oil in Zucker fatty rats. Triglyceride secretion rate was significantly reduced by a single dose of BMS-201038 by 35% at 0.3 mg/kg and 47% at 1 mg/kg, respectively. 3. Another group of Zucker fatty rats was dosed orally with BMS-201038 (0.3 and 1 mg/kg) for 14 days. Serum levels of triglycerides were reduced by 71% and 87%, non-esterified free fatty acids were reduced by 33% and 40%, and low-density lipoproteins by 26% and 29%, by 0.3 mg/kg and 1 mg/kg dose of BMS-201038, respectively. These serum lipid changes were accompanied by significant improvements in glucose tolerance and insulin sensitivity. In addition, lipid peroxidation in liver was reduced by 59% and 61%, and superoxide dismutase activity was increased by 11% and 45% by 0.3 mg/kg and 1 mg/kg dose of BMS-201038, respectively. Similar beneficial changes were found in aorta as well. 4. The present study provides evidence that inhibition of MTP with a small molecule inhibitor significantly improves dyslipidaemia associated with insulin resistance and reduces the atherosclerotic risk.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/prevención & control , Bencimidazoles/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Resistencia a la Insulina , Obesidad/complicaciones , Animales , Anticolesterolemiantes/administración & dosificación , Anticolesterolemiantes/farmacología , Aterosclerosis/complicaciones , Bencimidazoles/administración & dosificación , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Metabolismo/efectos de los fármacos , Obesidad/tratamiento farmacológico , Ratas , Ratas Zucker , Factores de Riesgo
17.
Eur J Pharmacol ; 899: 174032, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33753107

RESUMEN

Diabetic retinopathy is a serious complication of diabetes, marked by retinal vascular damage, inflammation, and angiogenesis. This study's objective was to assess the potential benefits of saroglitazar, a peroxisome proliferator-activated receptor-alpha/gamma (PPAR-α/γ) agonist in diabetic retinopathy. Diabetic retinopathy was induced by streptozotocin in Sprague Dawley rats. The effect of saroglitazar was also assessed in the oxygen-induced retinopathy model in newborn rats and VEGF-induced angiogenesis in the chick chorioallantoic membrane (CAM) assay. Treatment of saroglitazar (1 and 4 mg/kg, oral) for 12 weeks significantly ameliorated retinal vascular leakage and leukostasis in the diabetic rats. Saroglitazar decreased oxidative stress, VEGF receptor signalling, NF-κBp65, and ICAM-1 in the retina of diabetic rats. The beneficial effects of saroglitazar (1 and 4 mg/kg, oral) were also observed on the neovascularization in oxygen-induced retinopathy in newborn rats. Saroglitazar also reduced VEGF-induced angiogenesis in CAM assay. This study reveals that saroglitazar has the potential to prevent the progression of retinopathy in diabetic patients.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Retinopatía Diabética/tratamiento farmacológico , PPAR alfa/agonistas , PPAR gamma/agonistas , Fenilpropionatos/farmacología , Pirroles/farmacología , Retina/efectos de los fármacos , Neovascularización Retiniana/tratamiento farmacológico , Vasos Retinianos/efectos de los fármacos , Animales , Animales Recién Nacidos , Embrión de Pollo , Diabetes Mellitus Experimental/inducido químicamente , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Femenino , Hiperoxia/complicaciones , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Retina/metabolismo , Retina/patología , Neovascularización Retiniana/etiología , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal , Estreptozocina , Factor de Transcripción ReIA/metabolismo
18.
Drug Res (Stuttg) ; 71(9): 528-534, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34311475

RESUMEN

BACKGROUND: Hepcidin, a liver-derived peptide, regulates the absorption, distribution, and circulation of iron in the body. Inflammation or iron overload stimulates hepcidin release, which causes the accumulation of iron in tissues. The inadequate levels of iron in circulation impair erythropoiesis. Inhibition of hepcidin may increase iron in circulation and improve efficient erythropoiesis. Activin-like kinase (ALK) inhibitors decrease hepcidin. METHODS: In this work, we have investigated an ALK inhibitor LDN193189 for its efficacy in iron homeostasis. The effect of LDN193189 treatment was assessed in C57BL6/J mice, in which hepcidin was induced by either ferrous sulfate or lipopolysaccharide (LPS) injection. RESULTS: After two hours of treatment, ferrous sulfate increased serum and liver iron, serum hepcidin, and liver hepcidin expression. On the other hand, LPS reduced serum iron in a dose-related manner after six hours of treatment. LDN193189 treatment increased serum iron, decreased spleen and liver iron, decreased serum hepcidin and liver hepcidin expression in ferrous sulfate-treated mice, and increased serum iron in LPS-induced hypoferremia. We observed that ferrous sulfate caused a significantly higher increase in liver iron, serum hepcidin, and liver hepcidin than turpentine oil or LPS in mice. Iron dextran (intraperitoneal or intravenous) increased serum iron, but LDN193189 did not show hyperferremia with iron dextran stimulus. CONCLUSION: Ferrous sulfate-induced hyperferremia can be a valuable and rapid screening model for assessing the efficacy of hepcidin inhibitors.


Asunto(s)
Hepcidinas , Lipopolisacáridos , Animales , Compuestos Ferrosos , Homeostasis , Hierro , Ratones , Ratones Endogámicos C57BL
19.
Drug Res (Stuttg) ; 70(8): 376-384, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32645724

RESUMEN

BACKGROUND: Obesity and diabetes are major metabolic disorders that progress to severe morbidity and mortality. Neuroendocrine mechanisms controlling energy balance indicate that combination therapies are needed to sustain weight loss. Lorcaserin was one of the approved therapies for the treatment of obesity, which is recently withdrawn because a safety clinical trial, shows an increased occurrence of cancer. Coagonist of glucagon-like-peptide-1 (GLP-1) and glucagon receptors is a novel investigational therapy demonstrated to have both anti-obesity and anti-diabetic effect. Here, we investigated the effect of combination of lorcaserin and a GLP-1 and glucagon receptors coagonist in diet-induced obese (DIO) mice model. METHODS: The diet-induced obese C57BL/6J mice were used to assess acute and chronic effect of lorcaserin, coagonist of GLP-1and glucagon receptors and their combination on food intake, body weight, and biochemical parameters. RESULTS: In acute study, combination of lorcaserin and coagonist causes synergistic reductions in food intake and body weight. Repeated treatment of combination of lorcaserin and coagonist showed enhanced body weight loss over time, which is due to reduction in fat mass (subcutaneous, retroperitoneal, mesenteric and epididymal fat pad) compared to individual therapy. Also, suppression of locomotor activity seen with lorcaserin was not evident in combination with coagonist. No additive effect was observed in glucose tolerance (intraperitoneal glucose tolerance test or insulin tolerance test), serum lipids, hepatic lipids, and energy expenditure in combination group. CONCLUSION: These data suggest that combination of lorcaserin and coagonist could be a better combination to induce body weight loss.


Asunto(s)
Benzazepinas/farmacología , Péptido 1 Similar al Glucagón/agonistas , Glucagón/agonistas , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Prueba de Tolerancia a la Glucosa/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Receptores de Glucagón/metabolismo , Pérdida de Peso/efectos de los fármacos
20.
Bioorg Med Chem Lett ; 19(9): 2546-50, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19328683

RESUMEN

A few thienyl substituted pyrazole derivatives were synthesized to aid in the characterization of the cannabinoid receptor antagonist and also to serve as potentially useful antiobesity agent. Structural requirements for selective CB1 receptor antagonistic activity of 5-thienyl pyrazole derivatives included the structural similarity with potent, specific antagonist rimonabant 1. Compound 3 has been identified as a hair growth stimulator and an antiobesity agent in animal models.


Asunto(s)
Química Farmacéutica/métodos , Cabello/efectos de los fármacos , Obesidad/tratamiento farmacológico , Piperidinas/síntesis química , Pirazoles/síntesis química , Receptor Cannabinoide CB1/antagonistas & inhibidores , Animales , Benzoxazinas/farmacología , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Diseño de Fármacos , Concentración 50 Inhibidora , Modelos Químicos , Morfolinas/farmacología , Naftalenos/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Rimonabant
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA