RESUMEN
BACKGROUND: Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. METHODS: 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m2, n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. RESULTS: SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. CONCLUSIONS: Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Asunto(s)
Tejido Adiposo , Insuficiencia Cardíaca , Mediadores de Inflamación , Pericardio , Índice de Severidad de la Enfermedad , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Persona de Mediana Edad , Masculino , Femenino , Pericardio/metabolismo , Pericardio/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Resultado del Tratamiento , Mediadores de Inflamación/metabolismo , Volumen Sistólico/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Metabolómica , Biomarcadores/sangre , Tejido Adiposo EpicárdicoRESUMEN
Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.
Asunto(s)
Lipasa/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ésteres/química , Ácidos Grasos/metabolismo , Femenino , Células HEK293 , Humanos , Lipólisis/fisiología , Metabolismo/fisiología , Ratones , Ratones Noqueados , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Triglicéridos/metabolismoRESUMEN
Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.
Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Metabolómica , Deuterio , Cromatografía Liquida/métodos , Metabolómica/métodos , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that ß-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.
RESUMEN
With the increasing number of lipidomic studies, there is a need for an efficient and automated analysis of lipidomic data. One of the challenges faced by most existing approaches to lipidomic data analysis is lipid nomenclature. The systematic nomenclature of lipids contains all available information about the molecule, including its hierarchical representation, which can be used for statistical evaluation. The Lipid Over-Representation Analysis (LORA) web application (https://lora.metabolomics.fgu.cas.cz) analyzes this information using the Java-based Goslin framework, which translates lipid names into a standardized nomenclature. Goslin provides the level of lipid hierarchy, including information on headgroups, acyl chains, and their modifications, up to the "complete structure" level. LORA allows the user to upload the experimental query and reference data sets, select a grammar for lipid name normalization, and then process the data. The user can then interactively explore the results and perform lipid over-representation analysis based on selected criteria. The results are graphically visualized according to the lipidome hierarchy. The lipids present in the most over-represented terms (lipids with the highest number of enriched shared structural features) are defined as Very Important Lipids (VILs). For example, the main result of a demo data set is the information that the query is significantly enriched with "glycerophospholipids" containing "acyl 20:4" at the "sn-2 position". These terms define a set of VILs (e.g., PC 18:2/20:4;O and PE 16:0/20:4(5,8,10,14);OH). All results, graphs, and visualizations are summarized in a report. LORA is a tool focused on the smart mining of epilipidomics data sets to facilitate their interpretation at the molecular level.
Asunto(s)
Glicerofosfolípidos , Lípidos , Lípidos/análisis , Glicerofosfolípidos/química , Programas Informáticos , LipidómicaRESUMEN
Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for the untargeted profiling of biological samples. A multiplatform LC-MS-based approach is needed to screen polar metabolites and lipids comprehensively. Different mobile phase modifiers were tested to improve the electrospray ionization process during metabolomic and lipidomic profiling. For polar metabolites, hydrophilic interaction LC using a mobile phase with 10 mM ammonium formate/0.125% formic acid provided the best performance for amino acids, biogenic amines, sugars, nucleotides, acylcarnitines, and sugar phosphate, while reversed-phase LC (RPLC) with 0.1% formic acid outperformed for organic acids. For lipids, RPLC using a mobile phase with 10 mM ammonium formate or 10 mM ammonium formate with 0.1% formic acid permitted the high signal intensity of various lipid classes ionized in ESI(+) and robust retention times. For ESI(-), the mobile phase with 10 mM ammonium acetate with 0.1% acetic acid represented a reasonable compromise regarding the signal intensity of the detected lipids and the stability of retention times compared to 10 mM ammonium acetate alone or 0.02% acetic acid. Collectively, we show that untargeted methods should be evaluated not only on the total number of features but also based on common metabolites detected by a specific platform along with the long-term stability of retention times.
Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Formiatos , Metabolómica/métodos , Ácido Acético , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Eicosanoides/metabolismo , Proteínas de la Membrana/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/metabolismo , Animales , Eicosanoides/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingolípidos/análisisRESUMEN
Obesity is believed to be associated with a dysregulated endocannabinoid system which may reflect enhanced inflammation. However, reports of this in human white adipose tissue (WAT) are limited and inconclusive. Marine long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and therefore may improve obesity-associated adipose tissue inflammation. Therefore, fatty acid (FA) concentrations, endocannabinoid concentrations, and gene expression were assessed in subcutaneous WAT (scWAT) biopsies from healthy normal weight individuals (BMI 18.5-25 kg/m2) and individuals living with metabolically healthy obesity (BMI 30-40 kg/m2) prior to and following a 12-week intervention with 3 g fish oil/day (1.1 g eicosapentaenoic acid (EPA) + 0.8 g DHA) or 3 g corn oil/day (placebo). WAT from individuals living with metabolically healthy obesity had higher n-6 PUFAs and EPA, higher concentrations of two endocannabinoids (anandamide (AEA) and eicosapentaenoyl ethanolamide (EPEA)), higher expression of phospholipase A2 Group IID (PLA2G2D) and phospholipase A2 Group IVA (PLA2G4A), and lower expression of CNR1. In response to fish oil intervention, WAT EPA increased to a similar extent in both BMI groups, and WAT DHA increased by a greater extent in normal weight individuals. WAT EPEA and docosahexaenoyl ethanolamide (DHEA) increased in normal weight individuals only and WAT 2-arachidonyl glycerol (2-AG) decreased in individuals living with metabolically healthy obesity only. Altered WAT fatty acid, endocannabinoid, and gene expression profiles in metabolically healthy obesity at baseline may be linked. WAT incorporates n-3 PUFAs when their intake is increased which affects the endocannabinoid system; however, effects appear greater in normal weight individuals than in those living with metabolically healthy obesity.
Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Endocannabinoides/metabolismo , Obesidad Metabólica Benigna/tratamiento farmacológico , Grasa Subcutánea/efectos de los fármacos , Adolescente , Adulto , Ácidos Araquidónicos/metabolismo , Método Doble Ciego , Combinación de Medicamentos , Inglaterra , Femenino , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Obesidad Metabólica Benigna/diagnóstico , Obesidad Metabólica Benigna/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Grasa Subcutánea/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Adulto JovenRESUMEN
This study tested the hypothesis that in human aging, a decreased intramuscular acylcarnitine status is associated with (pre-)frailty, reduced physical performance, and altered mitochondrial function. We used a cross-sectional study design with well-matched fit and (pre-)frail old males and females, using young males and females as healthy controls. Frailty was assessed according to the Fried criteria and physical performance was determined by 400 m walk test, short physical performance battery and handgrip strength. Muscle and plasma acylcarnitine status, and muscle mitochondrial gene expression was analyzed. Results showed that intramuscular total carnitine levels and short-chain acylcarnitine levels were lower in (pre-)frail old females compared to fit old females and young females, whereas no differences were observed in males. The low intramuscular short-chain acylcarnitine levels in females correlated with low physical performance, even after correction for muscle mass (%), and were accompanied with lowered expression of genes involved in mitochondrial energy production and functionality. It is, therefore, concluded that in (pre-)frail old females, intramuscular total carnitine levels and short-chain acylcarnitine levels are decreased, and this decrease is associated with reduced physical performance and low expression of a wide range of genes critical for mitochondrial function. The results stress the importance of taking sex differences into account in aging research.
Asunto(s)
Envejecimiento/fisiología , Carnitina/análogos & derivados , Fragilidad/fisiopatología , Fuerza de la Mano/fisiología , Músculos/metabolismo , Aptitud Física/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Carnitina/sangre , Carnitina/química , Carnitina/metabolismo , Estudios Transversales , Femenino , Anciano Frágil , Fragilidad/metabolismo , Humanos , Masculino , Factores Sexuales , Caminata/fisiologíaRESUMEN
PURPOSE: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice. METHODS: C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed. RESULTS: As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no marked effect for these FAHFAs was observed on liver metabolism of obese diabetic mice. CONCLUSION: This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.
Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Animales , Metabolismo Basal , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BLRESUMEN
The Acyl-CoA-binding domain-containing protein (ACBD3) plays multiple roles across the cell. Although generally associated with the Golgi apparatus, it operates also in mitochondria. In steroidogenic cells, ACBD3 is an important part of a multiprotein complex transporting cholesterol into mitochondria. Balance in mitochondrial cholesterol is essential for proper mitochondrial protein biosynthesis, among others. We generated ACBD3 knock-out (ACBD3-KO) HEK293 and HeLa cells and characterized the impact of protein absence on mitochondria, Golgi, and lipid profile. In ACBD3-KO cells, cholesterol level and mitochondrial structure and functions are not altered, demonstrating that an alternative pathway of cholesterol transport into mitochondria exists. However, ACBD3-KO cells exhibit enlarged Golgi area with absence of stacks and ribbon-like formation, confirming the importance of ACBD3 in Golgi stacking. The glycosylation of the LAMP2 glycoprotein was not affected by the altered Golgi structure. Moreover, decreased sphingomyelins together with normal ceramides and sphingomyelin synthase activity reveal the importance of ACBD3 in ceramide transport from ER to Golgi.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Transporte Biológico/fisiología , Ceramidas/metabolismo , Colesterol/metabolismo , Glicosilación , Células HEK293 , Células HeLa , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Transducción de Señal/fisiología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismoRESUMEN
BACKGROUND/OBJECTIVE: Adaptation to the extrauterine environment depends on a switch from glycolysis to catabolism of fatty acids (FA) provided as milk lipids. We sought to learn whether the postnatal induction of muscle FA oxidation in mice could reflect propensity to obesity and to characterize the mechanisms controlling this induction. METHODS: Experiments were conducted using obesity-resistant A/J and obesity-prone C57BL/6J (B6) mice maintained at 30 °C, from 5 to 28 days after birth. At day 10, both A/J and B6 mice with genetic ablation (KO) of α2 subunit of AMP-activated protein kinase (AMPK) were also used. In skeletal muscle, expression of selected genes was determined using quantitative real-time PCR, and AMPK subunits content was evaluated using Western blotting. Activities of both AMPK and pyruvate dehydrogenase (PDH), as well as acylcarnitine levels in the muscle were measured. RESULTS: Acylcarnitine levels and gene expression indicated transient increase in FA oxidation during the first 2 weeks after birth, with a stronger increase in A/J mice. These data correlated with (i) the surge in plasma leptin levels, which peaked at day 10 and was higher in A/J mice, and (ii) relatively low activity of PDH linked with up-regulation of PDH kinase 4 gene (Pdk4) expression in the 10-day-old A/J mice. In contrast with the Pdk4 expression, transient up-regulation of uncoupling protein 3 gene was observed in B6 but not A/J mice. AMPK activity changed during the development, without major differences between A/J and B6 mice. Expression of neither Pdk4 nor other muscle genes was affected by AMPK-KO. CONCLUSIONS: Our results indicate a relatively strong postnatal induction of FA oxidation in skeletal muscle of the obesity-resistant A/J mice. This induction is transient and probably results from suppression of PDH activity, linked with a postnatal surge in plasma leptin levels, independent of AMPK.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Animales Recién Nacidos , Ratones , Ratones Endogámicos C57BL , Oxidación-ReducciónRESUMEN
Plasma profiles of acylcarnitines (ACs) and amino acids (AAs) may have interest as potential biomarkers. Here we analyzed plasma AC and AA profiles in 2 rat models with different metabolic programming outcomes: offspring of dams fed a cafeteria diet during lactation (O-CAF, with a thin-outside-fat-inside phenotype) and the offspring of dams with diet-induced obesity subjected to dietary normalization before gestation [offspring of postcafeteria dams (O-PCaf), nonaltered phenotype]. The purpose was to identify early variables that might indicate a propensity for a dysmetabolic state. O-CAF rats presented higher circulating levels of most of the lipid-derived ACs and higher hepatic expression of genes related to fatty acid oxidation ( Ppara and Cpt1a) than controls [offspring of control dams (O-C)]. They also exhibited an altered plasma AA profile. These differences were not observed in O-PCaf animals. A partial least squares-discriminant analysis score plot of the metabolomics data showed a clear separation between O-CAF and O-C animals. The long-chain ACs (C18, C18:1, C18:2, C16:1, and C16DC) and the AAs glycine, alanine, isoleucine, serine, and proline are the variables mainly influencing this separation. In summary, we have identified a cluster of ACs and AAs whose alterations may indicate poor nutrition during lactation due to maternal unbalanced diet intake and predict the later dysmetabolic phenotype observed in the offspring.-Pomar, C. A., Kuda, O., Kopecky, J., Rombaldova, M., Castro, H., Picó, C., Sánchez, J., Palou, A. Alterations in plasma acylcarnitine and amino acid profiles may indicate poor nutrition during the suckling period due to maternal intake of an unbalanced diet and may predict later metabolic dysfunction.
Asunto(s)
Aminoácidos/sangre , Animales Lactantes , Carnitina/análogos & derivados , Dieta , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedades Metabólicas/etiología , Estado Nutricional , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Carnitina/sangre , Femenino , Lactancia , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Modelos Animales , Análisis Multivariante , Embarazo , RatasRESUMEN
Treatment with all-trans retinoic acid (ATRA), the carboxylic form of vitamin A, lowers body weight in rodents by promoting oxidative metabolism in multiple tissues including white and brown adipose tissues. We aimed to identify novel markers of the metabolic impact of ATRA through targeted blood metabolomics analyses, with a focus on acylcarnitines and amino acids. Blood was obtained from mice treated with a high ATRA dose (50 mg/kg body weight/day, subcutaneous injection) or placebo (controls) during the 4 days preceding collection. LC-MS/MS analyses with a focus on acylcarnitines and amino acids were conducted on plasma and PBMC. Main results showed that, relative to controls, ATRA-treated mice had in plasma: increased levels of carnitine, acetylcarnitine, and longer acylcarnitine species; decreased levels of citrulline, and increased global arginine bioavailability ratio for nitric oxide synthesis; increased levels of creatine, taurine and docosahexaenoic acid; and a decreased n-6/n-3 polyunsaturated fatty acids ratio. While some of these features likely reflect the stimulation of lipid mobilization and oxidation promoted by ATRA treatment systemically, other may also play a causal role underlying ATRA actions. The results connect ATRA to specific nutrition-modulated biochemical pathways, and suggest novel mechanisms of action of vitamin A-derived retinoic acid on metabolic health.
Asunto(s)
Aminoácidos/sangre , Carnitina/análogos & derivados , Metaboloma/efectos de los fármacos , Metabolómica , Tretinoina/farmacología , Tejido Adiposo , Animales , Carnitina/sangre , Perfilación de la Expresión Génica , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Metabolómica/métodos , Ratones , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacosRESUMEN
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24â¯weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHFâ¯+â¯F). Overweight/obese, T2DM patients on metformin therapy were given for 24â¯weeks corn oil (Placebo; 5â¯g/day) or n-3 PUFA concentrate as above (Omega-3; 5â¯g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHFâ¯+â¯F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHFâ¯+â¯F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Suplementos Dietéticos , Endocannabinoides/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Obesidad/dietoterapia , Adulto , Anciano , Animales , Glucemia , Peso Corporal , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Endocannabinoides/sangre , Femenino , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Persona de Mediana Edad , Obesidad/sangre , Obesidad/etiología , Obesidad/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del TratamientoRESUMEN
To achieve optimal development of a newborn, breastfeeding is extensively recommended, but little is known about the role of non-nutritive bioactive milk components. We aimed to characterize the fatty acid esters of hydroxy fatty acids (FAHFAs), namely palmitic acid hydroxystearic acids (PAHSAs)-endogenous lipids with anti-inflammatory and anti-diabetic properties, in human breast milk. Breast milk samples from 30 lean (BMI=19-23) and 23 obese (BMI>30) women were collected 72h postpartum. Adipose tissue and milk samples were harvested from C57BL/6J mice. FAHFA lipid profiles were measured using reverse phase and chiral liquid chromatography-mass spectrometry method. PAHSA regioisomers as well as other FAHFAs were present in both human and murine milk. Unexpectedly, the levels of 5-PAHSA were higher relative to other regioisomers. The separation of both regioisomers and enantiomers of PAHSAs revealed that both R- and S-enantiomers were present in the biological samples, and that the majority of the 5-PAHSA signal is of R configuration. Total PAHSA levels were positively associated with weight gain during pregnancy, and 5-PAHSA as well as total PAHSA levels were significantly lower in the milk of the obese compared to the lean mothers. Our results document for the first time the presence of lipid mediators from the FAHFA family in breast milk, while giving an insight into the stereochemistry of PAHSAs. They also indicate the negative effect of obesity on 5-PAHSA levels. Future studies will be needed to explore the role and mechanism of action of FAHFAs in breast milk.
Asunto(s)
Leche Humana/metabolismo , Obesidad/metabolismo , Ácidos Palmíticos/metabolismo , Adulto , Animales , Estudios Transversales , Femenino , Humanos , RatonesRESUMEN
We found previously that white adipose tissue (WAT) hyperplasia in obese mice was limited by dietary omega-3 polyunsaturated fatty acids (omega-3 PUFA). Here we aimed to characterize the underlying mechanism. C57BL/6N mice were fed a high-fat diet supplemented or not with omega-3 PUFA for one week or eight weeks; mice fed a standard chow diet were also used. In epididymal WAT (eWAT), DNA content was quantified, immunohistochemical analysis was used to reveal the size of adipocytes and macrophage content, and lipidomic analysis and a gene expression screen were performed to assess inflammatory status. The stromal-vascular fraction of eWAT, which contained most of the eWAT cells, except for adipocytes, was characterized using flow cytometry. Omega-3 PUFA supplementation limited the high-fat diet-induced increase in eWAT weight, cell number (DNA content), inflammation, and adipocyte growth. eWAT hyperplasia was compromised due to the limited increase in the number of preadipocytes and a decrease in the number of endothelial cells. The number of leukocytes and macrophages was unaffected, but a shift in macrophage polarization towards a less inflammatory phenotype was observed. Our results document that the counteraction of eWAT hyperplasia by omega-3 PUFA in dietary-obese mice reflects an effect on the number of adipose lineage and endothelial cells.
Asunto(s)
Adipocitos/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Adipocitos/citología , Animales , Proliferación Celular/efectos de los fármacos , Dieta Alta en Grasa , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
It is becoming increasingly apparent that mutual interactions between adipocytes and immune cells are key to the integrated control of adipose tissue inflammation and lipid metabolism in obesity, but little is known about the non-inflammatory functions of adipose tissue macrophages (ATMs) and how they might be impacted by neighboring adipocytes. In the current study we used metabolipidomic analysis to examine the adaptations to lipid overload of M1 or M2 polarized macrophages co-incubated with adipocytes and explored potential benefits of omega-3 polyunsaturated fatty acids (PUFA). Macrophages adjust their metabolism to process excess lipids and M2 macrophages in turn modulate lipolysis and fatty acids (FA) re-esterification of adipocytes. While M1 macrophages tend to store surplus FA as triacylglycerols and cholesteryl esters in lipid droplets, M2 macrophages channel FA toward re-esterification and ß-oxidation. Dietary omega-3 PUFA enhance ß-oxidation in both M1 and M2. Our data document that ATMs contribute to lipid trafficking in adipose tissue and that omega-3 PUFA could modulate FA metabolism of ATMs.
Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos/metabolismo , Lipólisis , Macrófagos/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/citología , Animales , Células Cultivadas , Esterificación , Metabolismo de los Lípidos , Masculino , Ratones Endogámicos C57BLRESUMEN
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.
Asunto(s)
Adipocitos/metabolismo , Quimiotaxis , Dinoprostona/metabolismo , Lipólisis , Macrófagos/citología , Células 3T3-L1 , Animales , Ácido Araquidónico/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Activación Enzimática , Ayuno , Regulación Enzimológica de la Expresión Génica , Fosfolipasas A2 Grupo IV/metabolismo , Ratones , Células RAW 264.7RESUMEN
Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance."