Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 29(15): 24010-24024, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614654

RESUMEN

Next-generation satellite sensors such as the Ocean Color Instrument (OCI) aboard the NASA Plankton, Aerosols, Cloud and ocean Ecosystem (PACE) satellite and the proposed Surface Biology and Geology (SBG) sensor will provide hyperspectral measurements of water-leaving radiances. However, acquiring sufficiently accurate in situ validation data in coastal ecosystems remains challenging. Here we modeled hyperspectral normalized water-leaving radiance ([LW(λ)]N) in a dynamic coastal ecosystem using in situ inherent optical properties (IOPs) as inputs to the Hydrolight radiative transfer model. By reducing uncertainty of modeled hyperspectral [LW(λ)]N (%RMSE ≤ 21%) relative to [LW(λ)]N derived from in situ radiometric measurements (%RMSE ≤ 33%), we introduce modeling as an alternative or complementary method to in-water radiometric profilers for validating satellite-derived hyperspectral data from coastal ecosystems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/instrumentación , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta/métodos , Agua/análisis , Algoritmos , Océanos y Mares , Radiometría , Calidad del Agua
2.
J Phycol ; 56(6): 1521-1533, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32609873

RESUMEN

In the last decade, the known biogeography of nitrogen fixation in the ocean has been expanded to colder and nitrogen-rich coastal environments. The symbiotic nitrogen-fixing cyanobacteria group A (UCYN-A) has been revealed as one of the most abundant and widespread nitrogen-fixers, and includes several sublineages that live associated with genetically distinct but closely related prymnesiophyte hosts. The UCYN-A1 sublineage is associated with an open ocean picoplanktonic prymnesiophyte, whereas UCYN-A2 is associated with the coastal nanoplanktonic coccolithophore Braarudosphaera bigelowii, suggesting that different sublineages may be adapted to different environments. Here, we study the diversity of nifH genes present at the Santa Cruz Municipal Wharf in the Monterey Bay (MB), California, and report for the first time the presence of multiple UCYN-A sublineages, unexpectedly dominated by the UCYN-A2 sublineage. Sequence and quantitative PCR data over an 8-year time-series (2011-2018) showed a shift toward increasing UCYN-A2 abundances after 2013, and a marked seasonality for this sublineage which was present during summer-fall months, coinciding with the upwelling-relaxation period in the MB. Increased abundances corresponded to positive temperature anomalies in MB, and we discuss the possibility of a benthic life stage of the associated coccolithophore host to explain the seasonal pattern. The dominance of UCYN-A2 in coastal waters of the MB underscores the need to further explore the habitat preference of the different sublineages in order to provide additional support for the hypothesis that UCYN-A1 and UCYN-A2 sublineages are different ecotypes.


Asunto(s)
Cianobacterias , Nitrógeno , Bahías , California , Cianobacterias/genética , Fijación del Nitrógeno , Agua de Mar
3.
Appl Opt ; 59(22): 6765-6773, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749383

RESUMEN

Electromagnetic theory predicts spectral dependencies in extinction efficiency near a narrow absorption band for a particle with an index of refraction close to that of the medium in which it is immersed. These absorption band effects are anticipated in oceanographic beam-attenuation (beam-c) spectra, primarily due to the narrow red peak in absorption produced by the phytoplankton photopigment, chlorophyll a (Chl a). Here we present a method to obtain Chl a absorption and size information by analyzing an eigendecomposition of hyperspectral beam-c residuals measured in marine surface waters by an automatic underway system. We find that three principal modes capture more than 99% of the variance in beam-c residuals at wavelengths near the Chl a red absorption peak. The spectral shapes of the eigenvectors resemble extinction efficiency residuals attributed to the absorption band effects. Projection of the eigenvectors onto the beam-c residuals produces a time series of amplitude functions with absolute values that are strongly correlated to concurrent Chl a absorption line height (aLH) measurements (r values of 0.59 to 0.83) and hence provide a method to estimate Chl a absorption. Multiple linear regression of aLH on the amplitude functions enables an independent estimate of aLH, with RMSE of 3.19⋅10-3m-1 (3.3%) or log10-RMSE of 18.6%, and a raw-scale R2 value of 0.90 based on the Tara Oceans Expedition data. Relationships between the amplitude functions and the beam-c exponential slopes are in agreement with theory relating beam-c to the particle size distribution. Compared to multispectral analysis of beam-c slope, hyperspectral analysis of absorption band effects is anticipated to be relatively insensitive to the addition of nonpigmented particles and to monodispersion.


Asunto(s)
Absorción Fisicoquímica , Clorofila/análisis , Fitoplancton/citología , Análisis Espectral , Algoritmos , Geografía , Reproducibilidad de los Resultados
4.
Appl Opt ; 58(27): 7319-7330, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31674376

RESUMEN

We compared the mean normalized water-leaving radiances ([LW¯(λ)]N) of two in-water optical profilers, a compact optical profiling system (C-OPS) and a HyperPro II Optical Profiler (HP2), with modeled [LW¯(λ)]N at five stations in Monterey Bay, California. Although C-OPS and HP2 [LW¯(λ)]Ns were mostly within one standard deviation, C-OPS and modeled [LW¯(λ)]N showed the lowest absolute percent differences (≤25% for most wavelengths) at four of the stations. We attribute this to C-OPS's high vertical resolution (∼1 cm), which is important for detecting changes in optical layers and for measuring the upper 0-0.5 m of the water column. HP2's low vertical resolution (∼50 cm), low signal-to-noise ratio, and inability to measure the upper 0-0.5 m are problematic in Monterey Bay. Although a significant component of the [LW¯(λ)]N differences between C-OPS and HP2 likely stems from fluctuating water mass's inherent optical properties, the 25% error in [LW(λ)]Ns processed from HP2 casts, compared to <1% for C-OPS, is also important.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/instrumentación , Dispositivos Ópticos , Agua de Mar/química , California
5.
Glob Chang Biol ; 24(6): 2416-2433, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29623683

RESUMEN

Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.

6.
Ecol Appl ; 28(3): 749-760, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29509310

RESUMEN

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Asunto(s)
Biodiversidad , Tecnología de Sensores Remotos/instrumentación , Océanos y Mares , Fitoplancton
7.
Environ Sci Technol ; 52(10): 5519-5529, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29656639

RESUMEN

Anthropogenic nutrient overenrichment, coupled with rising temperatures, and an increasing frequency of extreme hydrologic events (storms and droughts) are accelerating eutrophication and promoting the expansion of harmful algal blooms (HABs) across the freshwater-to-marine continuum. All HABs-with a focus here on cyanobacterial blooms-pose serious consequences for water supplies, fisheries, recreational uses, tourism, and property values. As nutrient loads grow in watersheds, they begin to compound the effects of legacy stores. This has led to a paradigm shift in our understanding of how nutrients control eutrophication and blooms. Phosphorus (P) reductions have been traditionally prescribed exclusively for freshwater systems, while nitrogen (N) reductions were mainly stressed for brackish and coastal waters. However, because most systems are hydrologically interconnected, single nutrient (e.g., P only) reductions upstream may not necessarily reduce HAB impacts downstream. Reducing both N and P inputs is the only viable nutrient management solution for long-term control of HABs along the continuum. This article highlights where paired physical, chemical, or biological controls may improve beneficial uses in the short term, and offers management strategies that should be enacted across watershed scales to combat the global expansion of HABs across geographically broad freshwater-to-marine continua.


Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Eutrofización , Agua Dulce , Nitrógeno , Fósforo
8.
J Phycol ; 53(3): 664-679, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28328165

RESUMEN

Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH4+ ), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (Fv /Fm ) was a sensitive indicator of NH4+ toxicity, manifested by a suppression of Fv /Fm in a dose-dependent manner. Two chlorophytes were the least sensitive to NH4+ inhibition, at concentrations of >3,000 µmoles NH4+  · L-1 , followed by two estuarine diatoms that were sensitive at concentrations >1,000 µmoles NH4+  · L-1 , followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 µmoles NH4+  · L-1 . At non-inhibiting concentrations of NH4+ , the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO3- ), whereas the other grew significantly faster on NH4+ . All four diatoms tested grew faster on NH4+ compared with NO3- . We showed that in cases where growth rates were faster on NH4+ than they were on NO3- , the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH4+ dominates the total N pool and they will also not have a growth advantage when NO3- is dominant, as long as N concentrations are sufficient.


Asunto(s)
Carbono/metabolismo , Fotosíntesis , Fitoplancton/crecimiento & desarrollo , Fitoplancton/metabolismo , California , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Especificidad de la Especie
9.
Opt Express ; 24(16): 18559-70, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505819

RESUMEN

To solve the radiative transfer equation and relate inherent optical properties (IOPs) to apparent optical properties (AOPs), knowledge of the volume scattering phase function is required. Due to the difficulty of measuring the phase function, it is frequently approximated. We explore the sensitivity of derived AOPs to the phase function parameterization, and compare measured and modeled values of both the AOPs and estimated phase functions using data from Monterey Bay, California during an extreme "red tide" bloom event. Using in situ measurements of absorption and attenuation coefficients, as well as two sets of measurements of the volume scattering function (VSF), we compared output from the Hydrolight radiative transfer model to direct measurements. We found that several common assumptions used in parameterizing the radiative transfer model consistently introduced overestimates of modeled versus measured remote-sensing reflectance values. Phase functions from VSF data derived from measurements at multiple wavelengths and a single scattering single angle significantly overestimated reflectances when using the manufacturer-supplied corrections, but were substantially improved using newly published corrections; phase functions calculated from VSF measurements using three angles and three wavelengths and processed using manufacture-supplied corrections were comparable, demonstrating that reasonable predictions can be made using two commercially available instruments. While other studies have reached similar conclusions, our work extends the analysis to coastal waters dominated by an extreme algal bloom with surface chlorophyll concentrations in excess of 100 mg m-3.

10.
Opt Express ; 24(3): 2134-44, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906789

RESUMEN

Atmospheric correction of visible/infrared spectra traditionally involves either (1) physics-based methods using Radiative Transfer Models (RTMs), or (2) empirical methods using in situ measurements. Here a more general probabilistic formulation unifies the approaches and enables combined solutions. The technique is simple to implement and provides stable results from one or more reference spectra. This makes empirical corrections practical for large or remote environments where it is difficult to acquire coincident field data. First, we use a physics-based solution to define a prior distribution over reflectances and their correction coefficients. We then incorporate reference measurements via Bayesian inference, leading to a Maximum A Posteriori estimate which is generally more accurate than pure physics-based methods yet more stable than pure empirical methods. Gaussian assumptions enable a closed form solution based on Tikhonov regularization. We demonstrate performance in atmospheric simulations and historical data from the "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) acquired during the HyspIRI mission preparatory campaign.

11.
Geophys Res Lett ; 43(19): 10366-10376, 2016 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-27917011

RESUMEN

A coastwide bloom of the toxigenic diatom Pseudo-nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions. Pseudo-nitzschia australis thrived north of its typical range in the warm, nutrient-poor water that spanned the northeast Pacific in early 2015. The seasonal transition to upwelling provided the nutrients necessary for a large-scale bloom; a series of spring storms delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and economic disruptions in the future.

12.
Environ Sci Technol ; 49(11): 6665-73, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25988258

RESUMEN

We quantified groundwater discharge and associated nutrient fluxes to Monterey Bay, California, during the wet and dry seasons using excess (224)Ra as a tracer. Bioassay incubation experiments were conducted to document the response of bloom-forming phytoplankton to submarine groundwater discharge (SGD) input. Our data indicate that the high nutrient content (nitrate and silica) in groundwater can stimulate the growth of bloom-forming phytoplankton. The elevated concentrations of nitrate in groundwater around Monterey Bay are consistent with agriculture, landfill, and rural housing, which are the primary land-uses in the area surrounding the study site. These findings indicate that SGD acts as a continual source of nutrients that can feed bloom-forming phytoplankton at our study site, constituting a nonpoint source of anthropogenic nutrients to Monterey Bay.


Asunto(s)
Bahías , Agua Subterránea/análisis , Nitratos/análisis , Fitoplancton , Contaminación del Agua/análisis , Agricultura , California , Monitoreo del Ambiente , Agua Subterránea/química , Dióxido de Silicio/análisis
13.
Harmful Algae ; 49: 68-93, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27011761

RESUMEN

Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB "best practices" manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic barriers, how stratification may enhance or diminish HAB events, how trace nutrients (metals, vitamins) influence cell toxicity, and how grazing pressures may leverage, or mitigate HAB development. There is an absence of high quality time-series data in most regions currently experiencing HAB outbreaks, and little if any data from regions expected to develop HAB events in the future. A subset of observer sites is recommended to help develop stronger linkages among global, national, and regional climate change and HAB observation programs, providing fundamental datasets for investigating global changes in the prevalence of harmful algal blooms. Forecasting changes in HAB patterns over the next few decades will depend critically upon considering harmful algal blooms within the competitive context of plankton communities, and linking these insights to ecosystem, oceanographic and climate models. From a broader perspective, the nexus of HAB science and the social sciences of harmful algal blooms is inadequate and prevents quantitative assessment of impacts of future HAB changes on human well-being. These and other fundamental changes in HAB research will be necessary if HAB science is to obtain compelling evidence that climate change has caused alterations in HAB distributions, prevalence or character, and to develop the theoretical, experimental, and empirical evidence explaining the mechanisms underpinning these ecological shifts.

14.
J AOAC Int ; 97(2): 345-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830146

RESUMEN

Mortalities of California sea lions (Zalophus californianus) attributed to the neurotoxin domoic acid (DA) produced by the diatom Pseudo-nitzschia have occurred repeatedly along the U.S. west coast since the late 1990s. Quantifying the amount of DA in these animals and correlating this information with the presence of DA in phytoplankton and the local food web has become a research focus for many scientists. However, differences in materials, equipment, technical capability, budgets, and objectives of the various groups and/or agencies involved in this work have influenced the DA quantification platforms used. The goal of the present study was to compare the performance of two commercially available ELISAs for the determination of DA in a spectrum of California sea lion body fluids and to compare the results with LC/MS of the same samples. The results indicated differences among these approaches, presumably owing to matrix effects (particularly urine) and antibody reactivities. This information implies that care should be taken in attempting to compare datasets generated using different analytical platforms and interpreting the results of published studies.


Asunto(s)
Líquidos Corporales/química , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ácido Kaínico/análogos & derivados , Leones Marinos , Animales , Anticuerpos , Cromatografía Liquida/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Ácido Kaínico/química , Espectrometría de Masas , Fármacos Neuromusculares Despolarizantes/química , Reproducibilidad de los Resultados
15.
Sci Total Environ ; 946: 174250, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936722

RESUMEN

Harmful cyanobacteria blooms are a growing threat in estuarine waters as upstream blooms are exported into coastal environments. Cyanobacteria can produce potent toxins, one of which-hepatotoxic microcystins (MCs)-can persist and accumulate within the food web. Filter-feeding invertebrates may biomagnify toxins up to 100× ambient concentrations. As such, bivalves can be used as an environmentally relevant and highly sensitive sentinel for MC monitoring. To date there has been little research on cyanotoxin bioaccumulation in estuaries. The Sacramento-San Joaquin Delta (Delta) aquatic food web has undergone a profound change in response to widespread colonization of aquatic invasive species such as Asian clams (Corbicula fluminea) in the freshwater portion of the Delta. These clams are prolific-blanketing areas of the Delta at densities up to 1000 clams/m2 and are directly implicated in the pelagic organism decline of threatened and endangered fishes. We hypothesized that Asian clams accumulate MCs which may act as an additional stressor to the food web and MCs would seasonally be in exceedance of public health advisory levels. MCs accumulation in Delta Asian clams and signal crayfish (Pacifastacus leniusculus) were studied over a two-year period. ELISA and LC-MS analytical methods were used to measure free and protein-bound MCs in clam and crayfish tissues. We describe an improved MC extraction method for use when analyzing these taxa by LC-MS. MCs were found to accumulate in Asian clams across all months and at all study sites, with seasonal maxima occurring during the summer. Although MC concentrations rarely exceeded public health advisory levels, the persistence of MCs year-round still poses a chronic risk to consumers. Crayfish at times also accumulated high concentrations of MCs. Our results highlight the utility of shellfish as sentinel organisms for monitoring in estuarine areas.

16.
J Wildl Dis ; 60(1): 171-178, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972641

RESUMEN

During 2018, a seabird mortality event occurred in central California, US, that affected Northern Fulmars (Fulmarus glacialis), Common Murres (Uria aalge), and Cassin's Auklets (Ptychoramphus aleuticus). An increase in beachcast birds were reported on standardized surveys in conjunction with an increased number of live-stranded birds admitted to rehabilitation centers. Neurologic symptoms were noted during intake examination for some birds. Coincident with the mortality event, increased levels of the harmful algal bloom toxins domoic acid and saxitoxin were recorded in Monterey Bay and Morro Bay. Birds that died in care and beachcast carcasses were submitted to the California Department of Fish and Wildlife-Marine Wildlife Veterinary Care and Research Center for postmortem examination (n=24). All examined birds were emaciated. Examined Common Murres and Cassin's Auklets had no gross evidence of preexisting disease; however, all examined Northern Fulmars exhibited severe pyogranulomatous inflammation of the urogenital system at gross postmortem exam. Tissues from nine Northern Fulmars were examined by histopathology, and samples from two Northern Fulmars were tested for the presence of domoic acid and saxitoxin. Histopathology revealed moderate to severe kidney infection by Eimeria sp. and gram-negative bacteria, intratubular urate stasis, ureter rupture, and emaciation. Additionally, domoic acid and saxitoxin were detected simultaneously in tissues of some tested birds. This communication highlights a novel pattern of cascading comorbidities in native seabirds from a mass stranding event.


Asunto(s)
Charadriiformes , Saxitoxina , Animales , Aves , Animales Salvajes , Autopsia/veterinaria , Monitoreo del Ambiente
17.
Commun Earth Environ ; 5(1): 266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779128

RESUMEN

Ocean spring phytoplankton blooms are dynamic periods important to global primary production. We document vertical patterns of a diverse suite of eukaryotic algae, the prasinophytes, in the North Atlantic Subtropical Gyre with monthly sampling over four years at the Bermuda Atlantic Time-series Study site. Water column structure was used to delineate seasonal stability periods more ecologically relevant than seasons defined by calendar dates. During winter mixing, tiny prasinophytes dominated by Class II comprise 46 ± 24% of eukaryotic algal (plastid-derived) 16S rRNA V1-V2 amplicons, specifically Ostreococcus Clade OII, Micromonas commoda, and Bathycoccus calidus. In contrast, Class VII are rare and Classes I and VI peak during warm stratified periods when surface eukaryotic phytoplankton abundances are low. Seasonality underpins a reservoir of genetic diversity from multiple prasinophyte classes during warm periods that harbor ephemeral taxa. Persistent Class II sub-species dominating the winter/spring bloom period retreat to the deep chlorophyll maximum in summer, poised to seed the mixed layer upon winter convection, exposing a mechanism for initiating high abundances at bloom onset. Comparisons to tropical oceans reveal broad distributions of the dominant sub-species herein. This unparalleled window into temporal and spatial niche partitioning of picoeukaryotic primary producers demonstrates how key prasinophytes prevail in warm oceans.

18.
Harmful Algae ; 129: 102522, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951621

RESUMEN

Domoic acid produced by toxigenic Pseudo-nitzschia species is the main toxin threat from harmful algal blooms in Monterey Bay and the larger California Current region on the West Coast of the United States. Toxin monitoring in Monterey Bay includes a long-running time series of weekly measurements of domoic acid from water samples, sentinel mussels, and solid phase adsorption toxin tracking (SPATT) at the Santa Cruz Municipal Wharf (SCW). The SCW sampling site is unusual because of its position in the Monterey Bay upwelling shadow in the north bay. The upwelling shadow circulation pattern has been previously characterized as a bloom incubator for dinoflagellates, but it has not yet been analyzed in the context of long-term monitoring methods. In data collected from the SCW from 2012 - 2020, domoic acid from water samples and sentinel mussels had a different temporal distribution than domoic acid from SPATT. Here we explore the discrepancy through a seasonal and non-seasonal analysis including physical oceanography of the region. Results show that domoic acid from water samples and sentinel mussels are related to seasonal upwelling and Pseudo-nitzschia blooms. Domoic acid monitored by SPATT, on the other hand, is correlated to anomalous upwelling and warmer than usual temperatures during the relaxation season. This work builds on previous analyses of the SCW time series and contributes to understanding of the circulation of dissolved toxin in the environment. Results lend rationale for the continuation of rigorous domoic acid monitoring in Monterey Bay and encourage stakeholders to consider local physical dynamics when interpreting toxin monitoring data.


Asunto(s)
Bahías , Diatomeas , Estaciones del Año , Ácido Kaínico/análisis , Agua
19.
Integr Environ Assess Manag ; 19(3): 586-604, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35748667

RESUMEN

Many coastal states throughout the USA have observed negative effects in marine and estuarine environments caused by cyanotoxins produced in inland waterbodies that were transported downstream or produced in the estuaries. Estuaries and other downstream receiving waters now face the dual risk of impacts from harmful algal blooms (HABs) that occur in the coastal ocean as well as those originating in inland watersheds. Despite this risk, most HAB monitoring efforts do not account for hydrological connections in their monitoring strategies and designs. Monitoring efforts in California have revealed the persistent detection of cyanotoxins across the freshwater-to-marine continuum. These studies underscore the importance of inland waters as conduits for the transfer of cyanotoxins to the marine environment and highlight the importance of approaches that can monitor across hydrologically connected waterbodies. A HAB monitoring strategy is presented for the freshwater-to-marine continuum to inform HAB management and mitigation efforts and address the physical and hydrologic challenges encountered when monitoring in these systems. Three main recommendations are presented based on published studies, new datasets, and existing monitoring programs. First, HAB monitoring would benefit from coordinated and cohesive efforts across hydrologically interconnected waterbodies and across organizational and political boundaries and jurisdictions. Second, a combination of sampling modalities would provide the most effective monitoring for HAB toxin dynamics and transport across hydrologically connected waterbodies, from headwater sources to downstream receiving waterbodies. Third, routine monitoring is needed for toxin mixtures at the land-sea interface including algal toxins of marine origins as well as cyanotoxins that are sourced from inland freshwater or produced in estuaries. Case studies from California are presented to illustrate the implementation of these recommendations, but these recommendations can also be applied to inland states or regions where the downstream receiving waterbody is a freshwater lake, reservoir, or river. Integr Environ Assess Manag 2023;19:586-604. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Floraciones de Algas Nocivas , Lagos , Estuarios , Toxinas de Cianobacterias , Ríos
20.
Harmful Algae ; 126: 102435, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37290883

RESUMEN

Pseudo-nitzschia species with the ability to produce the neurotoxin domoic acid (DA) are the main cause of harmful algal blooms (HABs) along the U.S. West Coast, with major impacts on ecosystems, fisheries, and human health. While most Pseudo-nitzschia (PN) HAB studies to date have focused on their characteristics at specific sites, few cross-regional comparisons exist, and mechanistic understanding of large-scale HAB drivers remains incomplete. To close these gaps, we compiled a nearly 20-year time series of in situ particulate DA and environmental observations to characterize similarities and differences in PN HAB drivers along the California coast. We focus on three DA hotspots with the greatest data density: Monterey Bay, the Santa Barbara Channel, and the San Pedro Channel. Coastwise, DA outbreaks are strongly correlated with upwelling, chlorophyll-a, and silicic acid limitation relative to other nutrients. Clear differences also exist across the three regions, with contrasting responses to climate regimes across a north to south gradient. In Monterey Bay, PN HAB frequency and intensity increase under relatively nutrient-poor conditions during anomalously low upwelling intensities. In contrast, in the Santa Barbara and San Pedro Channels, PN HABs are favored under cold, nitrogen-rich conditions during more intense upwelling. These emerging patterns provide insights on ecological drivers of PN HABs that are consistent across regions and support the development of predictive capabilities for DA outbreaks along the California coast and beyond.


Asunto(s)
Diatomeas , Floraciones de Algas Nocivas , Humanos , Ecosistema , California , Ácido Kaínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA