Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 145(6): 815-827, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36973520

RESUMEN

Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.


Asunto(s)
Epilepsia , Ganglioglioma , Humanos , Epilepsia/patología , Ganglioglioma/genética , Ganglioglioma/patología , Mutación/genética , Fenotipo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Genes ras , Sistema de Señalización de MAP Quinasas
2.
Acta Neuropathol ; 143(1): 93-104, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34797422

RESUMEN

Malformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular classification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.


Asunto(s)
Metilación de ADN , Aprendizaje Profundo , Malformaciones del Desarrollo Cortical/clasificación , Malformaciones del Desarrollo Cortical/diagnóstico , Adolescente , Adulto , Niño , Preescolar , Epilepsia/etiología , Femenino , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/genética , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
3.
Epilepsia ; 63(1): 42-60, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741301

RESUMEN

OBJECTIVE: Focal cortical dysplasia (FCD) Type 1 and its three subtypes have yet not been fully characterized at the clinical, anatomopathological, and molecular level (International League Against Epilepsy [ILAE] FCD classification from 2011). We aimed to describe the clinical phenotype of patients with histopathologically confirmed FCD1A obtained from a single epilepsy center between 2002 and 2016. METHODS: Medical records were retrieved from the hospital's archive. Results from electroencephalography (EEG) video recordings, neuroimaging, and histopathology were reevaluated. Magnetic resonance imaging (MRI) post-processing was retrospectively performed in nine patients. DNA methylation studies were carried out from archival surgical brain tissue in 11 patients. RESULTS: Nineteen children with a histopathological diagnosis of FCD1A were included. The average onset of epilepsy was 0.9 years (range 0.2-10 years). All children had severe cognitive impairment and one third had mild motor deficits, yet fine finger movements were preserved in all patients. All patients had daily seizures, being drug resistant from disease onset. Interictal electroencephalography revealed bilateral multi-regional epileptiform discharges. Interictal status epilepticus was observed in 8 and countless subclinical seizures in 11 patients. Regional continuous irregular slow waves were of higher lateralizing and localizing yield than spikes. Posterior background rhythms were normal in 16 of 19 children. Neuroimaging showed unilateral multilobar hypoplasia and increased T2-FLAIR signals of the white matter in 18 of 19 patients. All children underwent tailored multilobar resections, with seizure freedom achieved in 47% (Engel class I). There was no case with frontal involvement without involvement of the posterior quadrant by MRI and histopathology. DNA methylation profiling distinguished FCD1A samples from all other epilepsy specimens and controls. SIGNIFICANCE: We identified a cohort of young children with drug resistance from seizure onset, bad EEG with posterior emphasis, lack of any focal neurological deficits but severe cognitive impairment, subtle hypoplasia of the epileptogenic area on MRI, and histopathologically defined and molecularly confirmed by DNA methylation analysis as FCD ILAE Type 1A.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Preescolar , Electroencefalografía , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Estudios Retrospectivos , Convulsiones/cirugía , Resultado del Tratamiento
4.
Nervenarzt ; 93(2): 142-150, 2022 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-34718829

RESUMEN

Hemispherotomies represent a major part of surgical interventions for epilepsy in childhood (16-21%). The anatomical resection has been replaced by minimally invasive disconnection techniques with lower perioperative mortality and fewer postoperative complications. Today the procedure is not only carried out from the lateral aspect via the Sylvian fissure/insula but also via a vertical parasagittal approach. Depending on the publication, hemispherotomy leads to freedom from postoperative seizures in 60-90% of patients. Despite changes in the surgical technique, disturbances of the cerebrospinal fluid circulation continue to be the main complication in 5-15% of cases. Hemispheric epileptogenic lesions usually lead to early onset and difficult to treat epilepsy in childhood. These epilepsies are characterized by a high frequency of seizures and propagation of epileptic discharges to the healthy hemisphere. The aim of a hemispherotomy is, in addition to postoperative freedom from seizures, the complete disconnection of the affected hemisphere. When deciding on a hemispherotomy, the expected functional consequences play a major role in addition to epileptological aspects. In the case of deficits already present preoperatively (hemianopia, hemiparesis) or reorganization of functions in the contralesional hemisphere (language), no new deficits are to be expected from the operation. In terms of cognition, a hemispherotomy can improve function by releasing the neuroplastic potential of the healthy hemisphere. In order to keep the negative and often irreversible effects of epilepsy as low as possible and to be able to use as much potential for neuroplasticity of the healthy hemisphere as possible, surgery should be considered as early as possible.


Asunto(s)
Epilepsia , Hemisferectomía , Niño , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/cirugía , Humanos , Convulsiones , Resultado del Tratamiento
5.
N Engl J Med ; 377(17): 1648-1656, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29069555

RESUMEN

BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.).


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Epilepsia/patología , Hipocampo/patología , Malformaciones del Desarrollo Cortical/patología , Adulto , Factores de Edad , Edad de Inicio , Neoplasias Encefálicas/complicaciones , Niño , Bases de Datos como Asunto , Epilepsia/etiología , Epilepsia/cirugía , Europa (Continente) , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Lóbulo Temporal/patología
6.
Acta Neuropathol ; 140(6): 881-891, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979071

RESUMEN

Polymicrogyria (PMG) is a developmental cortical malformation characterized by an excess of small and frustrane gyration and abnormal cortical lamination. PMG frequently associates with seizures. The molecular pathomechanisms underlying PMG development are not yet understood. About 40 genes have been associated with PMG, and small copy number variations have also been described in selected patients. We recently provided evidence that epilepsy-associated structural brain lesions can be classified based on genomic DNA methylation patterns. Here, we analyzed 26 PMG patients employing array-based DNA methylation profiling on formalin-fixed paraffin-embedded material. A series of 62 well-characterized non-PMG cortical malformations (focal cortical dysplasia type 2a/b and hemimegalencephaly), temporal lobe epilepsy, and non-epilepsy autopsy controls was used as reference cohort. Unsupervised dimensionality reduction and hierarchical cluster analysis of DNA methylation profiles showed that PMG formed a distinct DNA methylation class. Copy number profiling from DNA methylation data identified a uniform duplication spanning the entire long arm of chromosome 1 in 7 out of 26 PMG patients, which was verified by additional fluorescence in situ hybridization analysis. In respective cases, about 50% of nuclei in the center of the PMG lesion were 1q triploid. No chromosomal imbalance was seen in adjacent, architecturally normal-appearing tissue indicating mosaicism. Clinically, PMG 1q patients presented with a unilateral frontal or hemispheric PMG without hemimegalencephaly, a severe form of intractable epilepsy with seizure onset in the first months of life, and severe developmental delay. Our results show that PMG can be classified among other structural brain lesions according to their DNA methylation profile. One subset of PMG with distinct clinical features exhibits a duplication of chromosomal arm 1q.


Asunto(s)
Encéfalo/patología , Cromosomas/metabolismo , Epilepsia Refractaria/patología , Malformaciones del Desarrollo Cortical/patología , Polimicrogiria/patología , Variaciones en el Número de Copia de ADN/fisiología , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/genética , Femenino , Humanos , Masculino , Polimicrogiria/complicaciones , Polimicrogiria/genética , Convulsiones/patología
7.
Epilepsia ; 60(6): 1091-1103, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31074842

RESUMEN

OBJECTIVES: Focal cortical dysplasia (FCD) is a major cause of drug-resistant focal epilepsy in children, and the clinicopathological classification remains a challenging issue in daily practice. With the recent progress in DNA methylation-based classification of human brain tumors we examined whether genomic DNA methylation and gene expression analysis can be used to also distinguish human FCD subtypes. METHODS: DNA methylomes and transcriptomes were generated from massive parallel sequencing in 15 surgical FCD specimens, matched with 5 epilepsy and 6 nonepilepsy controls. RESULTS: Differential hierarchical cluster analysis of DNA methylation distinguished major FCD subtypes (ie, Ia, IIa, and IIb) from patients with temporal lobe epilepsy patients and nonepileptic controls. Targeted panel sequencing identified a novel likely pathogenic variant in DEPDC5 in a patient with FCD type IIa. However, no enrichment of differential DNA methylation or gene expression was observed in mechanistic target of rapamycin (mTOR) pathway-related genes. SIGNIFICANCE: Our studies extend the evidence for disease-specific methylation signatures toward focal epilepsies in favor of an integrated clinicopathologic and molecular classification system of FCD subtypes incorporating genomic methylation.


Asunto(s)
Metilación de ADN/genética , Malformaciones del Desarrollo Cortical/genética , Adolescente , Adulto , Niño , Preescolar , Análisis por Conglomerados , ADN/genética , Epilepsias Parciales/clasificación , Epilepsias Parciales/genética , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/clasificación , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Persona de Mediana Edad , ARN Mensajero/genética , Serina-Treonina Quinasas TOR/genética , Bancos de Tejidos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Transcriptoma , Adulto Joven
8.
Epilepsy Behav ; 91: 38-47, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30497893

RESUMEN

BACKGROUND: Precise robotic or stereotactic implantation of stereoelectroencephalography (sEEG) electrodes relies on the exact referencing of the planning images in order to match the patient's anatomy to the stereotactic device or robot. We compared the accuracy of sEEG electrode implantation with stereotactic frame versus laser scanning of the face based on computed tomography (CT) or magnetic resonance imaging (MRI) datasets for referencing. METHODS: The accuracy was determined by calculating the Euclidian distance between the planned trajectory and the postoperative position of the sEEG electrode, defining the entry point error (EPE) and the target point error (TPE). The sEEG electrodes (n = 171) were implanted with the robotic surgery assistant (ROSA) in 19 patients. Preoperative trajectory planning was performed on three-dimensional (3D) MRI datasets. Referencing was accomplished either by performing (A) 1.25-mm slice CT with the patient's head fixed in a Leksell stereotactic frame (CT-frame, n = 49), fused with a 3D-T1-weighted, contrast enhanced- and T2-weighted 1.5 Tesla (T) MRI; (B) 1.25 mm CT (CT-laser, n = 60), fused with 3D-3.0-T MRI; (C) 3.0-T MRI T1-based laser scan (3.0-T MRI-laser, n = 56) or (D) in one single patient, because of a pacemaker, 3D-1.5-T MRI T1-based laser scan (1.5-T MRI-laser, n = 6). RESULTS: In (A) CT-frame referencing, the mean EPE amounted to 0.86 mm and the mean TPE amounted to 2.28 mm (n = 49). In (B) CT-laser referencing, the EPE amounted to 1.85 mm and the TPE to 2.41 mm (n = 60). In (C) 3.0-T MRI-laser referencing, the mean EPE amounted to 3.02 mm and the mean TPE to 3.51 mm (n = 56). In (D) 1.5-T MRI, surprisingly the mean EPE amounted only to 0.97 mm and the TPE to 1.71 mm (n = 6). In 3 cases using CT-laser and 1 case using 3.0 T MRI-laser for referencing, small asymptomatic intracerebral hemorrhages were detected. No further complications were observed. CONCLUSION: Robot-guided sEEG electrode implantation using CT-frame referencing and CT-laser-based referencing is most accurate and can serve for high precision placement of electrodes. In contrast, 3.0-T MRI-laser-based referencing is less accurate, but saves radiation. Most trajectories can be reached if alternative routes over less vascularized brain areas are used. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond".


Asunto(s)
Electrodos Implantados/normas , Electroencefalografía/normas , Epilepsia/cirugía , Imagen por Resonancia Magnética/normas , Procedimientos Quirúrgicos Robotizados/normas , Técnicas Estereotáxicas/normas , Tomografía Computarizada por Rayos X/normas , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Niño , Electroencefalografía/métodos , Epilepsia/diagnóstico , Cara/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Rayos Láser/normas , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
9.
Epilepsy Behav ; 91: 68-74, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30061008

RESUMEN

BACKGROUND: Mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE) is a newly described, rare histopathologic entity detected in resected brain tissue of patients with refractory epilepsies. It shows a predominantly frontal localization causing a difficult-to-treat epilepsy with onset usually in early childhood. Histologically, MOGHE is characterized by blurred gray-white-matter boundaries with increased numbers of heterotopic neurons in the subcortical white matter and increased density of oligodendroglia. Little is known, to date, about radiologic features of MOGHE. Here, we report typical and age-related magnetic resonance (MR) characteristics of MOGHE. PATIENTS AND METHODS: Retrospective analysis of 40 preoperative MR images of 25 pediatric patients with MOGHE (m/f: 13/12) who underwent epilepsy surgery at a median age of 9.3 years at our center between 2003 and 2018. Median age at magnetic resonance imaging (MRI) was 5.2 years (1.5-20.7 years). RESULTS: Two MR subtypes were found: subtype I with an increased laminar T2 and fluid attenuated inversion recovery (FLAIR) signal at the corticomedullary junction and subtype II with reduced corticomedullary differentiation because of increased signal of the adjacent white matter. Distribution of subtypes was age-related, with subtype I occurring between 1.5 and 5.1 years (median 2.6 years) and subtype II between 3.4 and 20.7 years (median 14.1 years). In one patient, MRI at the age of 2.7 years showed subtype I but had converted to subtype II by the age of 16 years. Histology revealed that in addition to the above mentioned typical findings of MOGHE, patchy areas of reduced density of myelin in 6 of 7 patients presenting subtype I out of 14 patients in which retrospective analysis regarding myelination was accessible. CONCLUSION: Magnetic resonance characteristics in patients with MOGHE are age-related and seem to change from subtype I to subtype II probably because of maturational processes between 3 and 6 years. Patchy areas of hypomyelination in histology seem to disappear during brain maturation and may therefore represent the histologic correlate of laminar T2 and FLAIR hyperintensities in subtype I. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond".


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia Refractaria/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Oligodendroglía/patología , Adolescente , Factores de Edad , Encéfalo/cirugía , Niño , Preescolar , Epilepsia Refractaria/cirugía , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/cirugía , Humanos , Hiperplasia/diagnóstico por imagen , Hiperplasia/cirugía , Lactante , Espectroscopía de Resonancia Magnética/métodos , Masculino , Malformaciones del Desarrollo Cortical/cirugía , Proyectos Piloto , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Adulto Joven
11.
Brain ; 139(Pt 9): 2456-68, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27383529

RESUMEN

Hemidisconnections (i.e. hemispherectomies or hemispherotomies) invariably lead to contralateral hemiparesis. Many patients with a pre-existing hemiparesis, however, experience no deterioration in motor functions, and some can still grasp with their paretic hand after hemidisconnection. The scope of our study was to predict this phenomenon. Hypothesizing that preserved contralateral grasping ability after hemidisconnection can only occur in patients controlling their paretic hands via ipsilateral corticospinal projections already in the preoperative situation, we analysed the asymmetries of the brainstem (by manual magnetic resonance imaging volumetry) and of the structural connectivity of the corticospinal tracts within the brainstem (by magnetic resonance imaging diffusion tractography), assuming that marked hypoplasia or Wallerian degeneration on the lesioned side in patients who can grasp with their paretic hands indicate ipsilateral control. One hundred and two patients who underwent hemidisconnections between 0.8 and 36 years of age were included. Before the operation, contralateral hand function was normal in 3/102 patients, 47/102 patients showed hemiparetic grasping ability and 52/102 patients could not grasp with their paretic hands. After hemidisconnection, 20/102 patients showed a preserved grasping ability, and 5/102 patients began to grasp with their paretic hands only after the operation. All these 25 patients suffered from pre- or perinatal brain lesions. Thirty of 102 patients lost their grasping ability. This group included all seven patients with a post-neonatally acquired or progressive brain lesion who could grasp before the operation, and also all three patients with a preoperatively normal hand function. The remaining 52/102 patients were unable to grasp pre- and postoperatively. On magnetic resonance imaging, the patients with preserved grasping showed significantly more asymmetric brainstem volumes than the patients who lost their grasping ability. Similarly, these patients showed striking asymmetries in the structural connectivity of the corticospinal tracts. In summary, normal preoperative hand function and a post-neonatally acquired or progressive lesion predict a loss of grasping ability after hemidisconnection. A postoperatively preserved grasping ability is possible in hemiparetic patients with pre- or perinatal lesions, and this is highly likely when the brainstem is asymmetric and especially when the structural connectivity of the corticospinal tracts within the brainstem is asymmetric.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Mano/fisiopatología , Hemisferectomía/efectos adversos , Imagen por Resonancia Magnética/métodos , Actividad Motora/fisiología , Evaluación de Resultado en la Atención de Salud , Paresia/fisiopatología , Complicaciones Posoperatorias , Tractos Piramidales/diagnóstico por imagen , Adolescente , Adulto , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Lactante , Masculino , Paresia/congénito , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/fisiopatología , Pronóstico , Adulto Joven
12.
J Pharmacol Exp Ther ; 352(2): 368-78, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25503388

RESUMEN

As a member of the multidrug-resistance associated protein (MRP) family, MRP2 affects the brain entry of different endogenous and exogenous compounds. Considering the role of this transporter at the blood-brain barrier, the regulation is of particular interest. However, there is limited knowledge regarding the factors that regulate MRP2 in neurologic disease states. Thus, we addressed the hypothesis that MRP2 might be affected by a glutamate-induced signaling pathway that we previously identified as one key mechanism in the regulation of P-glycoprotein. Studies in isolated porcine brain capillaries confirmed that glutamate and N-methyl-d-aspartic acid (NMDA) exposure upregulates expression and function of MPR2. The involvement of the NMDA receptor was further suggested by the fact that the NMDA receptor antagonist MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], as well as the NMDA receptor glycine binding site antagonist L-701,324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], prevented the impact of glutamate. A role of cyclooxygenase-2 was indicated by coincubation with the cyclooxygenase-2 inhibitor celecoxib and the cyclooxygenase-1/-2 inhibitor indomethacin, which both efficaciously abolished a glutamate-induced upregulation of MRP2. Translational studies in human capillaries from surgical specimen demonstrated a relevant MRP2 efflux function and indicated an effect of glutamate exposure as well as its prevention by cyclooxygenase-2 inhibition. Taken together the findings provide first evidence for a role of a glutamate-induced NMDA receptor/cyclooxygenase-2 signaling pathway in the regulation of MRP2 expression and function. The response to excessive glutamate concentrations might contribute to overexpression of MRP2, which has been reported in neurologic diseases including epilepsy. The overexpression might have implications for brain access of various compounds including therapeutic drugs.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/biosíntesis , Encéfalo/irrigación sanguínea , Capilares/metabolismo , Ácido Glutámico/farmacología , Adolescente , Animales , Transporte Biológico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Capilares/efectos de los fármacos , Niño , Preescolar , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Epilepsia/metabolismo , Femenino , Humanos , Técnicas In Vitro , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Porcinos , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
13.
Mol Pharm ; 12(6): 2049-60, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25898179

RESUMEN

Breast cancer resistance protein (BCRP) functions as a major molecular gatekeeper at the blood-brain barrier. Considering its impact on access to the brain by therapeutic drugs and harmful xenobiotics, it is of particular interest to elucidate the mechanisms of its regulation. Excessive glutamate concentrations have been reported during epileptic seizures or as a consequence of different brain insults including brain ischemia. Previously, we have demonstrated that glutamate can trigger an induction of the transporter P-glycoprotein. These findings raised the question whether other efflux transporters are affected in a comparable manner. Glutamate exposure proved to down-regulate BCRP transport function and expression in isolated porcine capillaries. The reduction was efficaciously prevented by coincubation with N-methyl-d-aspartate (NMDA) receptor antagonist MK-801. The involvement of the NMDA receptor in the down-regulation of BCRP was further confirmed by experiments showing an effect of NMDA exposure on brain capillary BCRP transport function and expression. Pharmacological targeting of cyclooxygenase-1 and -2 (COX-1 and -2) using the nonselective inhibitor indomethacin, COX-1 inhibitor SC-560, and COX-2 inhibitor celecoxib revealed a contribution of COX-2 activity to the NMDA receptor's downstream signaling events affecting BCRP. Translational studies were performed using human capillaries isolated from surgical specimens of epilepsy patients. The findings confirmed a glutamate-induced down-regulation of BCRP transport activity in human capillaries, which argued against major species differences. In conclusion, our data reveal a novel mechanism of BCRP down-regulation in porcine and human brain capillaries. Moreover, together with previous data sets for P-glycoprotein, the findings point to a contrasting impact of the signaling pathway on the regulation of BCRP and P-glycoprotein. The effect of glutamate and arachidonic acid signaling on BCRP function might have implications for brain drug delivery and for radiotracer brain access in epilepsy patients and patients with other brain insults.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Encéfalo/metabolismo , Capilares/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Ácido Glutámico/metabolismo , Animales , Femenino , Humanos , Técnicas In Vitro , Masculino , Porcinos
14.
Neuropediatrics ; 45(5): 294-308, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25188830

RESUMEN

In recent years, intrathecal baclofen (ITB) has attained an important role in the treatment of severe spasticity and dystonia in children. There are principal differences between the use of ITB in children and its use in neurology and oncology in adults. Here, we present a consensus report on best practice for the treatment of severe spastic and dystonic movement disorders with ITB. Using a problem-orientated approach to integrate theories and methods, the consensus was developed by an interdisciplinary group of experienced ITB users and experts in the field of movement disorders involving 14 German centers. On the basis of the data pooled from more than 400 patients, the authors have summarized their experience and supporting evidence in tabular form to provide a concise, but still a comprehensive information base that represents our current understanding regarding ITB treatment options in children and adolescents.


Asunto(s)
Baclofeno/uso terapéutico , Trastornos Distónicos/tratamiento farmacológico , Relajantes Musculares Centrales/uso terapéutico , Espasticidad Muscular/tratamiento farmacológico , Índice de Severidad de la Enfermedad , Adolescente , Niño , Consenso , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Espinales , Masculino
15.
Childs Nerv Syst ; 30(12): 2015-26, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25255773

RESUMEN

The prevalence of focal cortical dysplasia (FCD) in pediatric patients with focal epilepsy is not exactly known because authors of publications in which the etiologies of epilepsies are listed, but which are not dealing specifically with epilepsy surgery issues, tend to lump together the many kinds of malformations of cortical development (MCD), of which FCDs, because of their relative frequency, are the most relevant subtypes. Out of 561 patients with MCD (children and adults) operated at centers in Europe who do feed data into the "European Epilepsy Brain Bank," 426 (76 %) had FCD.


Asunto(s)
Electroencefalografía , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/cirugía , Malformaciones del Desarrollo Cortical/fisiopatología , Malformaciones del Desarrollo Cortical/cirugía , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Preescolar , Estudios Transversales , Diagnóstico Diferencial , Epilepsias Parciales/epidemiología , Epilepsias Parciales/patología , Femenino , Humanos , Aumento de la Imagen , Imagenología Tridimensional , Lactante , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/epidemiología , Malformaciones del Desarrollo Cortical/patología , Examen Neurológico
16.
Clin Neuroradiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918242

RESUMEN

PURPOSE: After vertical parasagittal hemispherotomy a restricted diffusion is often seen ipsilaterally and even distant from the adjacent resection margin. This retrospective cohort study analyses the anatomic site and the time course of the diffusion restriction after vertical parasagittal hemispherotomy. METHODS: Fifty-nine patients were included into this study, all of them having had one pre-operative and at least one post-operative MRI, including diffusion imaging at b­values of 0 and 1000 s/mm2 with a calculated ADC. RESULTS: Diffusion restriction occurred exclusively on the operated site in all patients. In the basal ganglia, diffusion restriction was present in 37 of 38 patients at the first postoperative day with a duration of 38 days. In the midbrain, the posterior limb of the internal capsule and the thalamus, a restricted diffusion became postoperatively prominent at day 9 in all three localizations, with a duration of 36, 34 and 36 days, respectively. The incidence of thalamic lesions was lower if a preoperative damage had occurred. CONCLUSION: The restricted diffusion in the basal ganglia resembles direct effects of the operation at its edges, whereas the later appearing diffusion restriction in the midbrain and the posterior limb of the internal capsule rather belong to a degeneration of the descending fibers being transected by the hemispherotomy in the sense of a Wallerian degeneration. The presence of preoperative hemispheric lesions influences the development of diffusion restriction at subacute fiber degeneration.

17.
Transl Neurosci ; 15(1): 20220330, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38283997

RESUMEN

Objective: Heterozygous mutations within the voltage-gated sodium channel α subunit (SCN1A) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of SCN1A are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches. Methods: We investigated SCN1A mRNA expression and expression of two SCN1A related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against SCN1A specific antisense RNAs on SCN1A expression was tested. Results: The SCN1A related antisense RNAs SCN1A-dsAS (downstream antisense, RefSeq identifier: NR_110598) and SCN1A-usAS (upstream AS, SCN1A-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA SCN1A-usAS with SCN1A mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against SCN1A-dsAS was associated with a significant enhancement of SCN1A mRNA expression and reduction in SCN1A-dsAS transcripts. Conclusion: These findings support the role of SCN1A-dsAS in the suppression of SCN1A mRNA generation. Considering the haploinsufficiency in genetic SCN1A related DS, SCN1A-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance SCN1A expression in DS.

18.
Neurology ; 102(4): e208007, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290094

RESUMEN

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Estudios de Cohortes , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética , Estudios Retrospectivos , Convulsiones , Resultado del Tratamiento
19.
Acta Neuropathol ; 123(2): 259-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22120580

RESUMEN

Focal cortical dysplasias (FCD) which represent a composite group of cortical malformations are increasingly recognized as morphological substrate for severe therapy-refractory epilepsy in children and young adults. However, presurgical evaluation remains challenging as not all FCD variants can be reliably detected by high-resolution magnetic resonance imaging (MRI). Here, we studied a cohort of 52 epilepsy patients with neuropathological evidence for FCD using the 2011 classification of the International League against Epilepsy (ILAE) and systematically analysed those histopathologic features applicable also for MRI diagnostics. Histopathologic parameters included quantitative measurements of cellular profiles, cortical thickness, heterotopic neurons in white matter, and myelination that were compared between FCD subtypes and age-/localization-matched controls (n = 36) using multivariate analysis. Dysmorphic neurons in both FCD Type II variants showed significantly increased diameter of their cell bodies and nuclei. Cortical thickness was also increased with a distinct loss of myelin content specifying FCD Type IIb from IIa. The data further suggested that myelination deficits in FCD Type IIb result from compromised oligodendroglial lineage differentiation and we concluded that the "transmantle sign" is a unique finding in FCD Type IIb. In contrast, FCD Type Ia was characterized by a smaller cortical ribbon and higher neuronal densities, but these parameters failed to reach statistical significance (considering age- and location-dependent variability in controls). All FCD variants showed abnormal grey-white matter boundaries with increased numbers of heterotopic neurons. Similar results were obtained also at deep white matter location. Thus, many FCD variants may indeed escape visual MRI inspection, but suspicious areas with increased or decreased cortical thickness as well as grey-white matter blurring may be uncovered using post-processing protocols of neuroimaging data. The systematic analysis of well-specified histopathological features could be helpful to improve sensitivity and specificity in MRI detection during pre-surgical work-up of patients with drug-resistant focal epilepsies.


Asunto(s)
Encefalopatías/clasificación , Encefalopatías/patología , Clasificación Internacional de Enfermedades/normas , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Malformaciones del Desarrollo Cortical/clasificación , Malformaciones del Desarrollo Cortical/patología , Adolescente , Adulto , Anciano , Niño , Preescolar , Epilepsia/clasificación , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical de Grupo I , Persona de Mediana Edad , Adulto Joven
20.
Epilepsia ; 53(6): e98-101, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22462681

RESUMEN

Patients with hemispheric malformations of cortical development (such as polymicrogyria) often develop medically intractable epilepsies for which hemispherotomy can be an excellent treatment option. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) are noninvasive methods used to evaluate the sensorimotor system in adults and children before surgery. Preoperative results of both methods and their predictive values regarding hand function after hemispherotomy are described in four boys with hemispheric polymicrogyria, pharmacoresistent epilepsy, and hemiparesis with preserved grasp function of the paretic hand. TMS showing ipsilateral projections from the contralesional hemisphere but no evidence of crossed corticospinal projections from the lesioned hemisphere correctly predicted preserved postoperative grasp function in all four patients. In contrast, the interpretation of sensorimotor fMRI in patients with congenital hemiparesis is more difficult, as ipsilesional activation can occur as it was the case in three of four patients in the current study. This activation might represent contralaterally preserved primary somatosensory (S1) and not primary motor (M1) representation and is apparently not necessary for the paretic hand to still perform grasp movements.


Asunto(s)
Encéfalo , Potenciales Evocados Motores/fisiología , Lateralidad Funcional/fisiología , Mano/fisiopatología , Hemisferectomía/métodos , Malformaciones del Desarrollo Cortical , Encéfalo/irrigación sanguínea , Encéfalo/patología , Encéfalo/fisiopatología , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/fisiopatología , Malformaciones del Desarrollo Cortical/cirugía , Oxígeno/sangre , Periodo Posoperatorio , Valor Predictivo de las Pruebas , Estimulación Magnética Transcraneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA