RESUMEN
In this article, we specify for the first time a quantitative biopharmaceutics classification system for orally inhaled drugs. To date, orally inhaled drug product developers have lacked a biopharmaceutics classification system like the one developed to navigate the development of immediate release of oral medicines. Guideposts for respiratory drug discovery chemists and inhalation product formulators have been elusive and difficult to identify due to the complexity of pulmonary physiology, the intricacies of drug deposition and disposition in the lungs, and the influence of the inhalation delivery device used to deliver the drug as a respirable aerosol. The development of an inhalation biopharmaceutics classification system (iBCS) was an initiative supported by the Product Quality Research Institute (PQRI). The goal of the PQRI iBCS working group was to generate a qualitative biopharmaceutics classification system that can be utilized by inhalation scientists as a "rule of thumb" to identify desirable molecular properties and recognize and manage CMC product development risks based on physicochemical properties of the drug and the deposited lung dose. Herein, we define the iBCS classes quantitatively according to the dose number and permeability. The proposed iBCS was evaluated for its ability to categorize marketed inhaled drugs using data from the literature. The appropriateness of the classification of each drug was assessed based on published development, clinical and nonclinical data, and mechanistic physiologically based biopharmaceutics modeling. The inhaled drug product development challenges for each iBCS classification are discussed and illustrated for different classes of marketed inhaled drugs. Finally, it is recognized that discriminatory laboratory methods to characterize regional lung deposition, dissolution, and permeability will be key to fully realizing the benefits of an iBCS to streamline and derisk inhaled drug development.
Asunto(s)
Biofarmacia , Nebulizadores y Vaporizadores , Biofarmacia/métodos , Solubilidad , Preparaciones Farmacéuticas , Administración por Inhalación , Aerosoles/química , PermeabilidadRESUMEN
As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.
Asunto(s)
Lesión Pulmonar Aguda , Antineoplásicos , Bencimidazoles , Compuestos de Espiro , Animales , Porcinos , Cloro/toxicidad , Canales Catiónicos TRPV , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Inflamación , OxígenoRESUMEN
OBJECTIVE: Availability and consumer use of hemp products is rapidly increasing, but little work has been done to assess aerosol emissions of hemp pre-rolls. The objective of this research was to characterize the aerosol of pre-rolled joints from hemp material enriched for production of cannabigerol (CBG) that were smoked on a test system mimicking human use patterns. MATERIALS AND METHODS: Aerosol emissions were collected and analyzed using glass microfiber filters and charcoal cartridges. The aerosol was screened for nine phytocannabinoids and 19 terpenes. RESULTS: Three phytocannabinoids (CBG, cannabichromene (CBC), and delta-9-tetrahydrocannabinol (THC)) were detected and quantified at a mean (SD) concentration of 19.4 (4.7), 0.48 (0.01), and 0.40 (0.04) mg per pre-roll, respectively. Five terpenes ((-)-α-bisabolol, (-)-guaiol, ß-caryophyllene, nerolidol, and α-humulene) were detected and quantified at an average concentration of 352.7 (112.0), 194.3 (66.4), 106.0 (50.4), 28.3 (9.3), and 27.7 (11.2) µg per pre-roll, respectively. Particle size distribution testing via aerodynamic particle sizer and inertial impactor showed that average size of emitted aerosols was 0.77 (0.0) and 0.54 (0.1) µm, respectively. CONCLUSIONS: This study describes methodology for characterization of cannabinoid and terpene dose in emitted aerosols and aerosolization efficiency from hemp pre-rolls. It also presents these data for one of the marketed products.
Asunto(s)
Cannabis , Humanos , Aerosoles , HumoRESUMEN
This work is the second in a series of publications outlining the fundamental principles and proposed design of a biopharmaceutics classifications system for inhaled drugs and drug products (the iBCS). Here, a mechanistic computer-based model has been used to explore the sensitivity of the primary biopharmaceutics functional output parameters: (i) pulmonary fraction dose absorbed (Fabs) and (ii) drug half-life in lumen (t1/2) to biopharmaceutics-relevant input attributes including dose number (Do) and effective permeability (Peff). Results show the nonlinear sensitivity of primary functional outputs to variations in these attributes. Drugs with Do < 1 and Peff > 1 × 10-6 cm/s show rapid (t1/2 < 20 min) and complete (Fabs > 85%) absorption from lung lumen into lung tissue. At Do > 1, dissolution becomes a critical drug product attribute and Fabs becomes dependent on regional lung deposition. The input attributes used here, Do and Peff, thus enabled the classification of inhaled drugs into parameter spaces with distinctly different biopharmaceutic risks. The implications of these findings with respect to the design of an inhalation-based biopharmaceutics classification system (iBCS) and to the need for experimental methodologies to classify drugs need to be further explored.
Asunto(s)
Biofarmacia , Absorción Intestinal , Biofarmacia/métodos , Pulmón , Modelos Biológicos , Permeabilidad , SolubilidadRESUMEN
For oral drugs, the formulator and discovery chemist have a tool available to them that can be used to navigate the risks associated with the selection and development of immediate release oral drugs and drug products. This tool is the biopharmaceutics classification system (giBCS). Unfortunately, no such classification system exists for inhaled drugs. The perspective outlined in this manuscript provides the foundational principles and framework for a classification system for inhaled drugs. The proposed classification system, an inhalation-based biopharmaceutics classification system (iBCS), is based on fundamental biopharmaceutics principles adapted to an inhalation route of administration framework. It is envisioned that a classification system for orally inhaled drugs will facilitate an understanding of the technical challenges associated with the development of new chemical entities and their associated new drug products (device and drug formulation combinations). Similar to the giBCS, the iBCS will be based on key attributes describing the drug substance (solubility and permeability) and the drug product (dose and dissolution). This manuscript provides the foundational aspects of an iBCS, including the proposed scientific principles and framework upon which such a system can be developed.
Asunto(s)
Biofarmacia , Administración por Inhalación , Administración Oral , Permeabilidad , Preparaciones Farmacéuticas , SolubilidadRESUMEN
Aim: The cardiovascular toxicity of unheated and heated flavorants and their products as commonly present in electronic cigarette liquids (e-liquids) was evaluated previously in vitro. Based on the results of in vitro assays, cinnamaldehyde, eugenol, menthol, and vanillin were selected to conduct a detailed chemical analysis of the aerosol generated following heating of each compound both at 250 and 750 °C. Materials and Methods: Each flavoring was heated in a drop-tube furnace within a quartz tube. The combustion atmosphere was captured using different methods to enable analysis of 308 formed compounds. Volatile organic compounds (VOCs) were captured with an evacuated Summa canister and assayed via gas chromatography interfaced with mass spectrometry (GC-MS). Carbonyls (aldehydes and ketones) were captured using a 2,4-dinitrophenylhydrazine (DNPH) cartridge and assayed via a high-performance liquid chromatography-ultra-violet (HPLC-UV) assay. Polyaromatic hydrocarbons (PAHs) were captured using an XAD cartridge and filter, and extracts were assayed using GC-MS/MS. Polar compounds were assayed after derivatization of the XAD/filter extracts and analyzed via GC-MS. Conclusion: At higher temperature, both cinnamaldehyde and menthol combustion significantly increased formaldehyde and acetaldehyde levels. At higher temperature, cinnamaldehyde, eugenol, and menthol resulted in increased benzene concentrations. At low temperature, all four compounds led to higher levels of benzoic acid. These data show that products of thermal degradation of common flavorant compounds vary by flavorant and by temperature and include a wide variety of harmful and potentially harmful constituents (HPHCs).
Asunto(s)
Aerosoles , Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes , Calor , Productos de Tabaco , Acetaldehído/análisis , Acroleína/análisis , Aerosoles/química , Benceno/análisis , Ácido Benzoico/análisis , Eugenol/análisis , Formaldehído/análisis , Cetonas/análisis , Mentol/análisis , Espectrometría de Masas en Tándem , Productos de Tabaco/análisis , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/químicaRESUMEN
Local delivery of biotherapeutics to the lung holds great promise for treatment of lung diseases, but development of physically stable, biologically active dry powder formulations of large molecules for inhalation has remained a challenge. Here, spray drying was used to manufacture a dry powder pulmonary formulation of bevacizumab, a monoclonal antibody approved to treat non-small cell lung cancer (NSCLC) by intravenous infusion. By reformulating bevacizumab for local delivery, reduced side effects, lower doses, and improved patient compliance are possible. The formulation had aerosol properties suitable for delivery to the deep lung, as well as good physical stability at ambient temperature for at least 6 months. Bevacizumab's anti-VEGF bioactivity was not impacted by the manufacturing process. The formulation was efficacious in an in vivo rat model for NSCLC at a 10-fold decrease in dose relative to the intravenous control.
Asunto(s)
Antineoplásicos Inmunológicos , Bevacizumab , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Administración por Inhalación , Aerosoles , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Bevacizumab/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhaladores de Polvo Seco , Neoplasias Pulmonares/tratamiento farmacológico , Tamaño de la Partícula , Polvos , RatasRESUMEN
BACKGROUND: Epigenetic therapy through demethylation of 5-methylcytosine has been largely ineffective in treating lung cancer, most likely due to poor tissue distribution with oral or subcutaneous delivery of drugs such as 5-azacytidine (5AZA). An inhalable, stable dry powder formulation of 5AZA was developed. METHODS: Pharmacokinetics of inhaled dry powder and aqueous formulations of 5AZA were compared to an injected formulation. Efficacy studies and effect of therapy on the epigenome were conducted in an orthotopic rat lung cancer model for inhaled formulations. RESULTS: Inhaled dry powder 5AZA showed superior pharmacokinetic properties in lung, liver, brain and blood compared to the injected formulation and for all tissues except lung compared to an inhaled aqueous formulation. Only dry powder 5AZA was detected in brain (~4-h half-life). Inhaled dry powder was superior to inhaled aqueous 5AZA in reducing tumour burden 70-95%. Superiority of inhaled 5AZA dry powder was linked to effectively reprogramming the cancer genome through demethylation and gene expression changes in cancer signalling and immune pathways. CONCLUSIONS: These findings could lead to widespread use of this drug as the first inhaled dry powder therapeutic for treating local and metastatic lung cancer, for adjuvant therapy, and in combination with immunotherapy to improve patient survival.
Asunto(s)
Azacitidina/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Administración por Inhalación , Animales , Antígenos de Neoplasias/análisis , Azacitidina/farmacocinética , Desmetilación , Composición de Medicamentos , Epigenoma , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Polvos , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Globally, more people die annually from tuberculosis than from any other single infectious agent. Unfortunately, there is no commercially-available vaccine that is sufficiently effective at preventing acquisition of pulmonary tuberculosis in adults. In this study, pre-exposure prophylactic pulmonary delivery of active aerosolized anti-tuberculosis bacteriophage D29 was evaluated as an option for protection against Mycobacterium tuberculosis infection. An average bacteriophage concentration of approximately 1 PFU/alveolus was achieved in the lungs of mice using a nose-only inhalation device optimized with a dose simulation technique and adapted for use with a vibrating mesh nebulizer. Within 30 minutes of bacteriophage delivery, the mice received either a low dose (â¼50-100 CFU), or an ultra-low dose (â¼5-10 CFU), of M. tuberculosis H37Rv aerosol to the lungs. A prophylactic effect was observed with bacteriophage aerosol pre-treatment significantly decreasing M. tuberculosis burden in mouse lungs 24 hours and 3 weeks post-challenge (p < 0.05). These novel results indicate that a sufficient dose of nebulized mycobacteriophage aerosol to the lungs may be a valuable intervention to provide extra protection to health care professionals and other individuals at risk of exposure to M. tuberculosis.
RESUMEN
Peptide YY(3-36) (PYY(3-36)) is an endogenous appetite suppressing peptide. The present research was to perform pharmacokinetic/pharmacodynamic (PK/PD) analysis for predicting the concentration- and response-time profiles of PYY(3-36) after systemic and pulmonary delivery in mice, with the goal of suggesting a potential pulmonary dosing regimen in humans. A PK/PD model was developed to describe PYY(3-36) plasma concentration - and relative food intake rate ratio (as % of control) - time profiles after intraperitoneal and subcutaneous administration, and inhalation in mice. The absorption of inhaled PYY(3-36) from the lungs of mice could only be described with a combined slow (absorption rate of 0.147 L/h) and fast (absorption rate of 104.4 L/h) absorption process, presumably related to absorption from the central and peripheral regions of the lungs. The estimates for IC50 and Imax were 6.8 ng/mL and 63.5%, respectively, based on inhibitory Emax model. The PK parameters, such as clearance (CL), volume of distribution at steady state (Vdss), and the absorption rates (ka), were then scaled to human's. The scaled human CL and Vdss for obese subjects were 24.8 L/h and 9.0 L, respectively. The model predicted human plasma PYY(3-36) concentrations agreed reasonably well with placebo-normalized plasma PYY(3-36) concentrations after short-term infusion and SC injection in literature. An inhalation dose of PYY(3-36) of about 100 µg was proposed for obese subjects based on simulations. This PK/PD analysis satisfactorily described PYY(3-36) concentration-time and relative food intake rate ratio- time profiles at all doses and routes. The developed model might facilitate the inhalation dose selection of PYY(3-36).
Asunto(s)
Mucosa Gástrica/metabolismo , Pulmón/metabolismo , Péptido YY/farmacología , Péptido YY/farmacocinética , Administración por Inhalación , Animales , Apetito/efectos de los fármacos , Ingestión de Alimentos , Humanos , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , EstómagoRESUMEN
The utilization of ferrets as a non-clinical model for disease is rapidly increasing within drug development. Many of these models include respiratory diseases that involve targeted drug delivery via nose-only inhalation. While the deposition patterns within other non-clinical models (mice, rats, canines, and non-human primates) have been well studied, the local and regional deposition of aerosols in ferrets has not been well characterized. Therefore, inhalation aerosols were developed, radiolabeled and the radiolabeling methods validated to support SPECT-CT imaging and quantification of regional deposition within ferrets. The studies were conducted with one liquid formulation and one dry powder formulation (two concentrations of dry powder). Additionally, both aerosols were polydisperse and therefore reflect the majority of pharmaceutical aerosols. Overall, the studies showed lung deposition fractions between 5 and 10% with median aerodynamic particle sizes of 2.5 and 2.8 µm. The lung deposition fraction of the liquid aerosol was ~ 9%, nearly double observed in rats with a similarly sized aerosol. Analysis of respiratory tract (oropharynx, laryngopharynx, trachea, bifurcation area, and lung) deposition indicates increased deposition of the liquid aerosol compared to the dry powder aerosol, however, when this analysis was refined to the pulmonary region (trachea, bifurcation, and lung) the deposition was similar between formulations. These data provide the first description of the regional deposition of inhalation aerosols in ferrets with standard nose-only inhalation procedures. These data can be used for calculations of both total and regional doses within ferret inhalation drug delivery.
Asunto(s)
Aerosoles/farmacocinética , Sistemas de Liberación de Medicamentos , Pulmón/metabolismo , Polvos , Administración por Inhalación , Animales , Hurones , Humanos , Ratones , Nebulizadores y Vaporizadores , Tamaño de la Partícula , RatasRESUMEN
Background: Tecovirimat (ST-246) is being developed as an antiviral therapeutic for smallpox for use in the event of an accidental or intentional release. The last reported case of smallpox was 1978 but the potential for use of variola virus for biowarfare has renewed interest in smallpox antiviral therapeutics. Methods: Cynomolgus macaques were challenged with a lethal dose of monkeypox virus (MPXV) by aerosol as a model for human smallpox and treated orally with 10 mg/kg tecovirimat once daily starting up to 8 days following challenge. Monkeys were monitored for survival, lesions, and clinical signs of disease. Samples were collected for measurement of viremia by quantitative real-time polymerase chain reaction, and for white blood cell counts. Results: Survival in animals initiating treatment up to 5 days postchallenge was 100%. In animals treated starting 6, 7, or 8 days following challenge, survival was 67%, 100%, and 50%, respectively. Treatment initiation up to 4 days following challenge reduced severity of clinical manifestations of infection. Conclusions: Tecovirimat treatment initiated up to 8 days following a lethal aerosol MPXV challenge improves survival and, when initiated earlier than 5 days after challenge, provides protection from clinical effects of disease, supporting the conclusion that it is a promising smallpox antiviral therapeutic candidate.
Asunto(s)
Aerosoles/efectos adversos , Benzamidas/uso terapéutico , Isoindoles/uso terapéutico , Monkeypox virus/efectos de los fármacos , Mpox/tratamiento farmacológico , Animales , Femenino , Macaca fascicularis , Masculino , Tiempo de TratamientoRESUMEN
Idiopathic pulmonary fibrosis is a progressive and lethal disease and while there are now two approved drugs (Esbriet® and Ofev®) additional effective treatments are still needed. Recently, prostacyclin analogs such as iloprost and treprostinil (TRE) have been shown to exert some protection against bleomycin-induced pulmonary fibrosis in mice when administered in a prophylactic regimen. In this study, we evaluated the effect of the inhaled treprostinil prodrug hexadecyl-treprostinil (C16TR) formulated in a lipid nanoparticle (INS1009) administered therapeutically in a fibrotic rat model. Male Fischer 344 rats challenged with intra-tracheal saline instillation were then treated with daily inhaled phosphate buffered saline (PBS) while rats challenged with bleomycin sulfate (3.5-4.0â¯mg/kg) instillation were treated with either daily inhaled PBS, daily inhaled INS1009 (10, 30, or 100⯵g/kg), or twice-daily orally with the anti-fibrotic compound pirfenidone (100â¯mg/kg). Dosing started on day 10 post-bleomycin challenge and continued until day 27 after bleomycin. Lungs were harvested 24â¯h after the last dose of treatment for evaluation of lung hydroxyproline content and pulmonary histology. Lung hydroxyproline content increased from 421 µg/lung lobe in saline challenged and PBS treated animals to 673 µg/lung lobe in bleomycin challenged and PBS treated rats. Treatment of bleomycin challenged rats with 10, 30, or 100⯵g/kg INS1009 dose-dependently reduced lung hydroxyproline content to 563, 501, and 451 µg/lung lobe, respectively, and pirfenidone decreased hydroxyproline content to 522 µg/lung lobe. Histologically, both INS1009 (100⯵g/kg) and pirfenidone (100â¯mg/kg) reduced the severity of subepithelial fibrosis. Single dose pharmacokinetic (PK) studies of inhaled INS1009 in bleomycin challenged rats showed dose-dependent increases in lung C16TR concentration and plasma TRE on day 10 post-bleomycin challenge. Multiple dose PK studies of inhaled INS1009 showed dose-dependent increases only in lung C16TR concentration on day 27 post-bleomycin challenge. We also investigated the effects of TRE on the cytokine transforming growth factor-ß1 (TGF-ß1)-stimulated collagen gene and protein expressions in cultured human lung fibroblasts, assessed by real-time PCR and Sirius Red staining, respectively. In human fibroblasts, TRE (0.001-10⯵M) inhibited TGF-ß1 (20â¯ng/mL)-induced expression of collagen mRNA and protein in a concentration-dependent manner. These results demonstrated that inhaled INS1009, administered in a therapeutic dosing paradigm, dose-dependently (10-100⯵g/kg) inhibited bleomycin-induced pulmonary fibrosis in rats. This effect may involve direct actions of TRE in suppressing collagen expression in lung fibroblasts.
Asunto(s)
Antihipertensivos/administración & dosificación , Epoprostenol/análogos & derivados , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Nanopartículas , Administración por Inhalación , Animales , Antihipertensivos/farmacocinética , Antihipertensivos/farmacología , Bleomicina/administración & dosificación , Bleomicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Epoprostenol/administración & dosificación , Epoprostenol/farmacocinética , Epoprostenol/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Hidroxiprolina/metabolismo , Fibrosis Pulmonar Idiopática/fisiopatología , Lípidos/química , Masculino , Profármacos , Piridonas/farmacología , Ratas , Ratas Endogámicas F344 , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Previous studies have shown that complex mixtures containing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) produce systemic immunotoxicity in animal models following inhalation exposures. While we and others have shown that emissions associated with hardwood smoke (HWS), cigarette smoke and diesel exhaust can suppress the immune systems of animals in vitro and in vivo, there have been few immune function studies on human peripheral blood mononuclear cells (HPBMC) following exposure of humans to HWS. Our work shows that T cells are an important targets of PM and PAH immunotoxicity. These studies were conducted on HPBMC from 14 human volunteers receiving four 2 h nightly exposures to clean air or HWS at a concentration of 500 ug/m(3). We measured anti-CD3/anti-CD28 stimulated T-cell proliferation and HPBMC cytokine production in cell supernatants, including interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), TH1 cytokines γIFN and IL-2, TH2 cytokine IL-4, Th17 cytokine interleukin 17A (IL-17A) and interleukin 10 (IL-10). We analyzed results using analysis of variance (ANOVA), t-tests and Pearson correlation. Results showed that there was significant variation in the amount of T-cell proliferation observed following polyclonal activation with anti-CD3/anti-CD28 antibodies in both the air and HWS-exposed groups. There was not a significant effect of HWS on T-cell proliferation. However, we did find a strong relationship between the presence of proinflammatory cytokines (IL-1ß, TNF-α, IL-6, but not IL-8) and the amount of T-cell proliferation seen in individual donors, demonstrating that brief exposures of humans to HWS can produce changes in systemic immunity that is associated with proinflammatory cytokines.
Asunto(s)
Exposición por Inhalación , Humo/efectos adversos , Madera , Adulto , Anticuerpos , Biomarcadores , Antígenos CD28/inmunología , Complejo CD3/inmunología , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Linfocitos T/efectos de los fármacosRESUMEN
Developing inhaled drugs requires knowledge of lung anatomy, cell biology, respiratory physiology, particle physics, and some plumbing. Although dose makes the poison, in the context of an inhaled drug, the "dose" is not easily defined. This lack of clarity around dose poses issues and challenges in the design of inhalation toxicology programs. To better understand dose, the influence of ventilation is discussed as are the perturbations in pulmonary function observed with inhalation exposure that can affect dose. Methods for determining inhaled drug deposition to arrive at an estimate of lung dose are examined. Equally important to understanding dose are the techniques used to deliver aerosols to animals. With a better understanding of dose and inhalation exposure, species-specific histopathologic lesions, both common background and toxicologically significant lesions, are reviewed. Finally, insight into how regulators synthesize and evaluate these complex findings to assess clinical safety risks is presented.
Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/metabolismo , Administración por Inhalación , Animales , Humanos , Legislación de Medicamentos , Sistema Respiratorio/anatomía & histologíaRESUMEN
OBJECTIVE: Peptide YY3-36 [PYY(3-36)] has shown efficacy in appetite suppression when dosed by injection modalities (intraperitoneal (IP)/subcutaneous). Transitioning to needle-free delivery, towards inhalation, often utilizes systemic pharmacokinetics as a key endpoint to compare different delivery methods and doses. Systemic pharmacokinetics were evaluated for PYY3-36 when delivered by IP, subcutaneous, and inhalation, the systemic pharmacokinetics were then used to select doses in an appetite suppression pharmacodynamic study. METHODS: Dry-powder formulations were manufactured by spray drying and delivered to mice via nose only inhalation. The systemic plasma, lung tissue, and bronchoalveolar lavage fluid pharmacokinetics of different inhalation doses of PYY(3-36) were compared to IP and subcutaneous efficacious doses. Based on these pharmacokinetic data, inhalation doses of 70:30 PYY(3-36):Dextran T10 were evaluated in a mouse model of appetite suppression and compared to IP and subcutaneous data. RESULTS: Inhalation pharmacokinetic studies showed that plasma exposure was similar for a 2 × higher inhalation dose when compared to subcutaneous and IP delivery. Inhalation doses of 0.22 and 0.65 mg/kg were for efficacy studies. The results showed a dose-dependent (not dose proportional) decrease in food consumption over 4 h, which is similar to IP and subcutaneous delivery routes. CONCLUSIONS: The pharmacokinetic and pharmacodynamics results substantiate the ability of pharmacokinetic data to inform pharmacodynamics dose selection for inhalation delivery of the peptide PYY(3-36). Additionally, engineered PYY(3-36):Dextran T10 particles delivered to the respiratory tract show promise as a non-invasive therapeutic for appetite suppression.
Asunto(s)
Depresores del Apetito/farmacología , Apetito/efectos de los fármacos , Composición de Medicamentos/métodos , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Administración por Inhalación , Aerosoles , Animales , Depresores del Apetito/administración & dosificación , Depresores del Apetito/farmacocinética , Depresores del Apetito/uso terapéutico , Disponibilidad Biológica , Desecación , Dextranos/química , Portadores de Fármacos/química , Cálculo de Dosificación de Drogas , Inhaladores de Polvo Seco , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Ratones , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Fragmentos de Péptidos/uso terapéutico , Péptido YY/administración & dosificación , Péptido YY/farmacocinética , Péptido YY/uso terapéutico , PolvosRESUMEN
Inhaled peptides and proteins have promise for respiratory and systemic disease treatment. Engineered spray-dried powder formulations have been shown to stabilize peptides and proteins and optimize aerosol properties for pulmonary delivery. The current study was undertaken to investigate the in vitro and in vivo inhalation performance of a model spray-dried powder of insulin and dextran 10 in comparison to Exubera™. Dextrans are a class of glucans that are generally recognized as safe with optimum glass transition temperatures well suited for spray drying. A 70% insulin particle loading was prepared by formulating with 30% (w/v) dextran 10. Physical characterization revealed a "raisin like" particle. Both formulations were generated to produce a similar bimodal particle size distribution of less than 3.5 µm MMAD. Four female Beagle dogs were exposed to each powder in a crossover design. Similar presented and inhaled doses were achieved with each powder. Euglycemia was achieved in each dog prior and subsequent to dosing and blood samples were drawn out to 245 min post-exposure. Pharmacokinetic analyses of post-dose insulin levels were similar for both powders. Respective dextran 10-insulin and Exubera exposures were similar producing near identical area under the curve (AUC), 7,728 ± 1,516 and 6,237 ± 2,621; concentration maximums (C max), 126 and 121 (µU/mL), and concentration-time maximums, 20 and 14 min, respectively. These results suggest that dextran-10 and other dextrans may provide a novel path for formulating peptides and proteins for pulmonary delivery.
Asunto(s)
Dextranos/química , Portadores de Fármacos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Insulina/administración & dosificación , Administración por Inhalación , Aerosoles , Animales , Área Bajo la Curva , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Química Farmacéutica , Estudios Cruzados , Perros , Femenino , Hipoglucemiantes/sangre , Hipoglucemiantes/química , Insulina/sangre , Insulina/química , Insulina/farmacocinética , Tasa de Depuración Metabólica , Tamaño de la Partícula , Polvos , Tecnología Farmacéutica/métodosRESUMEN
Ribonucleic acid (RNA) extraction and purification play pivotal roles in molecular biology and cell and gene therapy, where the quality and integrity of RNA are critical for downstream applications. Automated high-throughput systems have gained interest due to their potential for scalability and reduced labor requirements compared to manual methods. However, ensuring high-throughput capabilities, reproducibility, and reliability while maintaining RNA yield and purity remains challenging. This study evaluated and compared the performance of four commercially available high-throughput magnetic bead-based RNA extraction kits across six types of naïve non-human primate (NHP) tissue matrices: brain, heart, kidney, liver, lung, and spleen. The assessment focused on RNA purity, yield, and extraction efficiency (EE) using Xeno Internal Positive Control (IPC) spiking. Samples (â¼50 mg) were homogenized via bead-beating and processed according to the manufacturer's protocol on the KingFisher Flex platform in eight replicates. RNA purity and yield were measured using a NanoDrop® spectrophotometer, while EE was evaluated via real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The findings indicate consistent high RNA purity across all tested extraction kits, yet substantial variation in RNA yield. Extraction efficiency exhibited variations across tissue types, with decreasing trends observed from brain to lung tissues. These results underscore the importance of careful kit selection and method optimization for achieving reliable downstream applications. The MagMAX™ mirVana™ Total RNA Isolation Kit stands out as the most accurate and reproducible, making it the preferred choice for applications requiring high RNA quality and consistency. Other kits, such as the Maxwell® HT simplyRNA Kit, offer a good balance between cost and performance, though with some trade-offs in precision. These findings highlight the importance of selecting the appropriate RNA isolation method based on the specific needs of the research, underscoring the critical role of accurate nucleic acid extraction in gene and cell therapy research. In conclusion, this study highlights the critical factors influencing RNA extraction performance, emphasizing the need for researchers and practitioners to consider both kit performance and tissue characteristics when designing experimental protocols. These insights contribute to the ongoing efforts to enhance the reproducibility and reliability of RNA extraction methods in molecular biology and cell/gene therapy applications.
Asunto(s)
ARN , Animales , ARN/aislamiento & purificación , ARN/genética , Reproducibilidad de los Resultados , Ensayos Analíticos de Alto Rendimiento/métodos , Pulmón/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Encéfalo/metabolismo , Hígado/metabolismo , Bazo/metabolismo , Juego de Reactivos para Diagnóstico/normasRESUMEN
Monoclonal antibodies (mAbs) represent a promising modality for the prevention and treatment of viral infections. For infections that initiate from the respiratory tract, direct administration of specific neutralizing mAbs into lungs has advantages over systemic injection of the same mAbs. Herein, using AUG-3387, a human-derived mAb with high affinity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its various variants, as a model mAb, we formulated the mAb into dry powders by thin-film freeze-drying, confirmed that the AUG-3387 mAb reconstituted from the dry powders retained their integrity, high affinity to the SARS-CoV-2 spike protein receptor binding domain (RBD), as well as ability to neutralize RBD-expressing pseudoviruses. Finally, we showed that one of the AUG-3387 mAb dry powders had desirable aerosol properties for pulmonary delivery into the lung. We concluded that thin-film freeze-drying represents a viable method to prepare inhalable powders of virus-neutralizing mAbs for pulmonary delivery into the lung.
Asunto(s)
Anticuerpos Monoclonales , Liofilización , Polvos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/administración & dosificación , Administración por Inhalación , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/administración & dosificación , Humanos , Inhaladores de Polvo Seco , Aerosoles , Pulmón/metabolismo , COVID-19/prevención & control , Tratamiento Farmacológico de COVID-19RESUMEN
BACKGROUND: Nebulizers are used commonly for inhaled drug delivery. Because they deliver medication through aerosol generation, clarification is needed on what constitutes safe aerosol delivery in infectious respiratory disease settings. The COVID-19 pandemic highlighted the importance of understanding the safety and potential risks of aerosol-generating procedures. However, evidence supporting the increased risk of disease transmission with nebulized treatments is inconclusive, and inconsistent guidelines and differing opinions have left uncertainty regarding their use. Many clinicians opt for alternative devices, but this practice could impact outcomes negatively, especially for patients who may not derive full treatment benefit from handheld inhalers. Therefore, it is prudent to develop strategies that can be used during nebulized treatment to minimize the emission of fugitive aerosols, these comprising bioaerosols exhaled by infected individuals and medical aerosols generated by the device that also may be contaminated. This is particularly relevant for patient care in the context of a highly transmissible virus. RESEARCH QUESTION: How can potential risks of infections during nebulization be mitigated? STUDY DESIGN AND METHODS: The COPD Foundation Nebulizer Consortium (CNC) was formed in 2020 to address uncertainties surrounding administration of nebulized medication. The CNC is an international, multidisciplinary collaboration of patient advocates, pulmonary physicians, critical care physicians, respiratory therapists, clinical scientists, and pharmacists from research centers, medical centers, professional societies, industry, and government agencies. The CNC developed this expert guidance to inform the safe use of nebulized therapies for patients and providers and to answer key questions surrounding medication delivery with nebulizers during pandemics or when exposure to common respiratory pathogens is anticipated. RESULTS: CNC members reviewed literature and guidelines regarding nebulization and developed two sets of guidance statements: one for the health care setting and one for the home environment. INTERPRETATION: Future studies need to explore the risk of disease transmission with fugitive aerosols associated with different nebulizer types in real patient care situations and to evaluate the effectiveness of mitigation strategies.