Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Allergy Asthma Clin Immunol ; 17(1): 37, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820548

RESUMEN

BACKGROUND: Drug reaction with eosinophilia and systemic symptoms (DRESS) is a rare but serious delayed hypersensitivity reaction that can be caused by antibiotic exposure. The reaction typically develops in 2 to 6 weeks. The pathophysiology is thought to involve toxic drug metabolites acting as a hapten, triggering a systemic response. The diagnosis is made clinically but can be confirmed using assays such as the lymphocyte toxicity assay (LTA), which correlates cell death upon exposure to drug metabolites with susceptibility to hypersensitivity reactions. CASE PRESENTATIONS: Case 1 involves a previously healthy 11-month-old male with first exposure to amoxicillin-clavulanate, prescribed for seven days to treat a respiratory infection. The patient developed DRESS fourteen days after starting the drug and was successfully treated with corticosteroids. LTA testing confirmed patient susceptibility to hypersensitivity reactions with amoxicillin-clavulanate. Parental samples were also tested, showing both maternal and paternal susceptibility. Neither parent reported prior hypersensitivity reactions. Lifelong penicillin avoidance for the patient was advised along with the notation in medical records of penicillin allergy. The parents were advised to avoid penicillin class antibiotics and be monitored closely for DRESS if they are exposed. Case 2 involves an 11-year-old female with atopic dermatitis with first exposure to amoxicillin-clavulanate, prescribed for ten days to treat a secondary bacterial skin infection. She developed DRESS eleven days after starting antibiotics and was successfully treated with corticosteroids. LTA testing confirmed patient susceptibility to hypersensitivity reactions with amoxicillin-clavulanate. Maternal samples were also tested and showed sensitivity. The mother reported no prior hypersensitivity reactions. Lifelong penicillin avoidance for the patient was advised along with the notation in medical records of penicillin allergy. CONCLUSIONS: Amoxicillin-clavulanate is a commonly used antibiotic and the cases we have described suggest that it should be recognized as a potential cause of DRESS in pediatric patients. Furthermore, these cases contribute to current literature supporting that there may be a shorter latent period in DRESS induced by antibiotics. We have also shown that the LTA can be a helpful tool to confirm DRESS reactions, and that testing may have potential implications for family members.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32532880

RESUMEN

The innate immune system allows for rapid recognition of pathogens. Toll-like receptor (TLR) signaling is a key aspect of the innate immune response, and interleukin-1 receptor-associated kinase 4 (IRAK4) plays a vital role in the TLR signaling cascade. Each TLR recognizes a distinct set of pathogen-associated molecular patterns (PAMPs) that encompass conserved microbial components such as lipopolysaccharides and flagellin. Upon binding of PAMPs and TLR activation, TLR intracellular domains initiate the oligomerization of the myeloid differentiation primary response 88 (MyD88), IRAK1, IRAK2, and IRAK4 signaling platform known as the Myddosome complex while also triggering the Toll/IL-1R domain-containing adaptor-inducing IFN-ß (TRIF)-dependent pathway. The Myddosome complex initiates signal transduction pathways enabling the activation of NF-κB and mitogen-activated protein kinase (MAPK) transcription factors and the subsequent production of inflammatory cytokines. Human IRAK4 deficiency is an autosomal recessive inborn error of immunity that classically presents with blunted or delayed inflammatory response to infection and susceptibility to a narrow spectrum of pyogenic bacteria, particularly Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa. We describe a case of IRAK4 deficiency in an 11-mo-old boy with concurrent S. pneumoniae bacteremia and S. aureus cervical lymphadenitis with a blunted inflammatory response to invasive infection. Although initial clinical immune profiling was unremarkable, a high degree of suspicion for an innate immune defect prompted genetic sequencing. Genetic testing revealed a novel variant in the IRAK4 gene (c.1049delG, p.(Gly350Glufs*15)) predicted to be likely pathogenic. Functional testing showed a loss of IRAK4 protein expression and abolished TLR signaling, confirming the pathogenicity of this novel IRAK4 variant.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Homocigoto , Quinasas Asociadas a Receptores de Interleucina-1/genética , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/genética , Familia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Modelos Biológicos , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA