Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochem J ; 477(5): 953-970, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069359

RESUMEN

To understand the role of substrate plasminogen kringles in its differential catalytic processing by the streptokinase - human plasmin (SK-HPN) activator enzyme, Fluorescence Resonance Energy Transfer (FRET) model was generated between the donor labeled activator enzyme and the acceptor labeled substrate plasminogen (for both kringle rich Lys plasminogen - LysPG, and kringle less microplasminogen - µPG as substrates). Different steps of plasminogen to plasmin catalysis i.e. substrate plasminogen docking to scissile peptide bond cleavage, chemical transformation into proteolytically active product, and the decoupling of the nascent product from the SK-HPN activator enzyme were segregated selectively using (1) FRET signal as a proximity sensor to score the interactions between the substrate and the activator during the cycle of catalysis, (2) active site titration studies and (3) kinetics of peptide bond cleavage in the substrate. Remarkably, active site titration studies and the kinetics of peptide bond cleavage have shown that post docking chemical transformation of the substrate into the product is independent of kringles adjacent to the catalytic domain (CD). Stopped-flow based rapid mixing experiments for kringle rich and kringle less substrate plasminogen derivatives under substrate saturating and single cycle turnover conditions have shown that the presence of kringle domains adjacent to the CD in the macromolecular substrate contributes by selectively speeding up the final step, namely the product release/expulsion step of catalysis by the streptokinase-plasmin(ogen) activator enzyme.


Asunto(s)
Dominio Catalítico/fisiología , Fibrinolisina/metabolismo , Kringles/fisiología , Plasminógeno/metabolismo , Estreptoquinasa/metabolismo , Catálisis , Fibrinolisina/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Plasminógeno/química , Estructura Secundaria de Proteína , Estreptoquinasa/química , Especificidad por Sustrato/fisiología
2.
Int J Syst Evol Microbiol ; 68(11): 3463-3470, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30207517

RESUMEN

A novel Gram-stain-positive, rod-shaped, motile, spore-forming, strictly aerobic, alkali- and halo- tolerant bacterium, designated strain AK72T, was isolated from a water sample collected from Sambhar salt lake, Rajasthan, India. The colony appears circular, shiny, smooth, translucent or slightly pale in colour and convex with an entire margin after 48 h incubation at 37 °C with pH 9. Growth of the bacterium occurred at 10-42 °C (optimum, 25-37 °C), at salinities of 0.5-10 % (w/v) NaCl (optimum 3-5 % NaCl) and pH of 6-10 (optimum pH 9). Strain AK72T was positive for oxidase, catalase, nitrate reductase, phenylalanine deaminase, ornithine decarboxylase, aesculinase, lipase and urease activities. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 and the cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The major polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid, three unidentified phospholipids and three unidentified lipids. The genomic DNA G+C content of the strain AK72T was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain AK72T was closely related to Bacillus cellulosilyticus (96.5 %) and Bacillus vedderi (96.3 %), but the novel strain AK72T formed a separate clade with Bacillus aurantiacus whereas B. cellulosilyticus and B. vedderi were clustered in a separate clade. The above data in combination with the phenotypic characteristics and phylogenetic data inferred that strain AK72T represents a novel species of the genus Bacillus, for which the name Bacillusshivajii sp. nov. is proposed. The type strain is AK72T (=MTCC 12636T=KCTC 33981T=JCM 32183T).


Asunto(s)
Bacillus/clasificación , Lagos/microbiología , Filogenia , Salinidad , Bacillus/genética , Bacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , India , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfatidilgliceroles/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Int J Syst Evol Microbiol ; 68(11): 3506-3511, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30226463

RESUMEN

A strictly aerobic, haloalkali-tolerant, Gram-stain-positive, non-motile, rod-shaped bacterium, designated strain SMB4T, was isolated from a water sample collected from Sambhar salt lake, Rajasthan, India. Growth occurred at 25-50 °C, 4-12 % (w/v) NaCl and pH of 5-9. Strain SMB4T was positive for ß-galactosidase, oxidase, catalase and urease activities. The fatty acids were dominated by branched forms of fatty acids with iso- and anteiso-saturated fatty acids, with a high abundance of anteiso-C15 : 0, anteiso-C17 : 0 and C18 : 0. The cell-wall peptidoglycan of strain SMB4T contained meso-diaminopimelic acid, while the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and three unidentified lipids. The DNA G+C content of strain SMB4T was 49.1 mol%. A blast sequence similarity search based on 16S rRNA gene sequence indicated that Salibacterium halochares, Salibacterium halotolerans and Salibacterium qingdaonense were the nearest phylogenetic neighbours, with a pair-wise sequence similarities of 98.4, 98.2 and 97.0 % respectively. Phylogenetic analysis showed that strain SMB4T was clustered with S. halochares and together clustered with S. halotolerans and S. qingdaonense. DNA-DNA hybridization of strain SMB4T with S. halochares DSM 21373T, S. halotolerans S7T and S. quigdaonense DSM 21621T showed a relatedness values of only 39.8, 26.3 and 42.8 %, respectively. Based on its phenotypic characteristics and on phylogenetic inference, strain SMB4T represents a novel species of the genus Salibacterium, for which the name Salibacterium nitratireducens sp. nov. is proposed. The type strain is SMB4T (=MTCC 12633T=KCTC 33876T=JCM 32187T).


Asunto(s)
Bacillaceae/clasificación , Lagos/microbiología , Filogenia , Salinidad , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , India , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
J Bacteriol ; 198(20): 2841-52, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27481930

RESUMEN

UNLABELLED: The Mycobacterium tuberculosis exported repetitive protein (RvErp) is a crucial virulence-associated factor as determined by its role in the survival and multiplication of mycobacteria in cultured macrophages and in vivo Although attempts have been made to understand the function of Erp protein, its exact role in Mycobacterium pathogenesis is still elusive. One way to determine this is by searching for novel interactions of RvErp. Using a yeast two-hybrid assay, an adenylyl cyclase (AC), Rv2212, was found to interact with RvErp. The interaction between RvErp and Rv2212 is direct and occurs at the endogenous level. The Erp protein of Mycobacterium smegmatis (MSMEG_6405, or MsErp) interacts neither with Rv2212 nor with Ms_4279, the M. smegmatis homologue of Rv2212. Deletion mutants of Rv2212 revealed its adenylyl cyclase domain to be responsible for the interaction. RvErp enhances Rv2212-mediated cyclic AMP (cAMP) production. Also, the biological significance of the interaction between RvErp and Rv2212 was demonstrated by the enhanced survival of M. smegmatis within THP-1 macrophages. Taken together, these studies address a novel mechanism by which Erp executes its function. IMPORTANCE: RvErp is one of the important virulence factors of M. tuberculosis This study describes a novel function of RvErp protein of M. tuberculosis by identifying Rv2212 as its interacting protein. Rv2212 is an adenylyl cyclase (AC) and produces cAMP, one of the prime second messengers that regulate the intracellular survival of mycobacteria. Therefore, the significance of investigating novel interactions of RvErp is paramount in unraveling the mechanisms governing the intracellular survival of mycobacteria.


Asunto(s)
Adenilil Ciclasas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Adenilil Ciclasas/genética , Proteínas Bacterianas/metabolismo , AMP Cíclico/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Viabilidad Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Unión Proteica
5.
Chem Asian J ; : e202400680, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961687

RESUMEN

Metal dipyrrinato complexes of 4d and 5d metals have distinctive features such as high absorption coefficients in the visible section and room temperature phosphorescence in the red region. This work demonstrates the light-assisted oxidation of organic compounds employing rhenium(I)dipyrrinato complexes as catalysts. The heavy atom effect in rhenium(I)dipyrrinato complexes leads to the formation of long-lived triplet excited states, and these complexes can generate singlet oxygen in excellent yields (up to 84%). A method was developed for photocatalytic aerobic oxidation of sulfides and amines using only 0.05 mol % and 0.025 mol % of the rhenium(I)dipyrrinato complexes, respectively. The method is efficient, and within 2h, a variety of substrates were oxidized to produce sulfoxides and imines in high yields (up to 97%). rhenium(I)dipyrrinato complexes work very well both in visible light and sunlight, making them promising candidates for photocatalytic applications.

6.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730234

RESUMEN

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Asunto(s)
Aptámeros de Nucleótidos , Dominio Catalítico , Hirudinas , Trombina , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacología , Anticoagulantes/farmacología , Anticoagulantes/química , Factor Xa/metabolismo , Factor Xa/química , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacología , Animales , Sitios de Unión , Coagulación Sanguínea/efectos de los fármacos
7.
Chem Sci ; 14(32): 8624-8634, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37592981

RESUMEN

Covalent organic frameworks (COFs) are an outstanding platform for heterogeneous photocatalysis. Herein, we synthesized a pyrene-based two-dimensional C[double bond, length as m-dash]C linked π-conjugated COF via Knoevenagel condensation and anchored Ni(ii)-centers through bipyridine moieties. Instead of traditional dual metallaphotoredox catalysis, the mono-metal decorated Ni@Bpy-sp2c-COF interlocked the catalysis mediated by light and the transition metal. Under light irradiation, enhanced energy and electron transfer in the COF backbone, as delineated by the photoluminescence, electrochemical, and control experiments, expedited the excitation of Ni centers to efficiently catalyze diverse photocatalytic C-X (X = B, C, N, O, P, S) cross-coupling reactions with efficiencies orders of magnitude higher than the homogeneous controls. The COF catalyst tolerated a diverse range of coupling partners with various steric and electronic properties, delivering the products with up to 99% yields. Some reactions were performed on a gram scale and were applied to diversify pharmaceuticals and complex molecules to demonstrate the synthetic utility.

8.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35114109

RESUMEN

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Asunto(s)
Anticoagulantes/farmacología , Aptámeros de Nucleótidos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor V/antagonistas & inhibidores , Factor Va/antagonistas & inhibidores , Secuencia de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Emparejamiento Base , Sitios de Unión , COVID-19/sangre , Membrana Celular/química , Membrana Celular/metabolismo , Factor V/química , Factor V/genética , Factor V/metabolismo , Factor Va/química , Factor Va/genética , Factor Va/metabolismo , Heparina de Bajo-Peso-Molecular/química , Heparina de Bajo-Peso-Molecular/metabolismo , Humanos , Sueros Inmunes/química , Sueros Inmunes/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Protaminas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Técnica SELEX de Producción de Aptámeros , Especificidad por Sustrato , Tratamiento Farmacológico de COVID-19
9.
J Biol Chem ; 284(47): 32642-50, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19801674

RESUMEN

With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the beta-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the beta-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in k(cat) without any alteration in apparent substrate affinity (K(m)) as compared with wild-type streptokinase and identified the importance of Lys(180) as well as Pro(177) in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in "partner" plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in k(cat) as that observed in the case of full-length plasminogen, with no concomitant change in K(m). These results strongly suggest that the 170 loop of the beta-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se.


Asunto(s)
Plasminógeno/metabolismo , Estreptoquinasa/metabolismo , Alanina/química , Secuencia de Aminoácidos , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Datos de Secuencia Molecular , Mutagénesis , Mutación , Péptidos/química , Plasminógeno/química , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
10.
Nat Biotechnol ; 36(7): 606-613, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29863725

RESUMEN

Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.


Asunto(s)
Anticoagulantes/administración & dosificación , Inhibidores del Factor Xa/administración & dosificación , Factor Xa/química , Hemorragia Posoperatoria/tratamiento farmacológico , Anticoagulantes/química , Aptámeros de Nucleótidos/administración & dosificación , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Puente Cardiopulmonar/efectos adversos , Cristalografía por Rayos X , Combinación de Medicamentos , Factor Xa/genética , Inhibidores del Factor Xa/química , Heparina/efectos adversos , Humanos , Hemorragia Posoperatoria/genética , Hemorragia Posoperatoria/patología , Conformación Proteica/efectos de los fármacos
11.
Curr Pharm Des ; 22(38): 5868-5878, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26845325

RESUMEN

Streptokinase (SK) is an efficient thrombolytic agent that dissolves fibrin blood clots with clinical efficiency comparable to the high priced drug, tissue plasminogen activator (tPA). However, being of bacterial origin, its major drawbacks are its potentially high antigenicity, and relatively short circulating half-life (approximately 10-15 min). In the present investigation, an attempt has been made to address both these shortcomings by site-specific pegylation, and to obtain longer lasting thrombolytics, which are consistent with clinical requirements. Therefore, we employed available three-dimensional structural information on SK to carry out site-specific cysteine incorporation at 'optimal' surfaceexposed sites within all the three domains in streptokinase followed by pegylation with 20KDa PEG groups, and screening for biologically active variants. Interestingly, some of these SK PEG-conjugates exhibited considerably subdued immunereactivity along with enhanced in-vitro proteolytic stability profiles and extended circulating in-vivo half-lives (2 to 20-fold compared to that of native unconjugated SK) depending upon location and number of PEG-groups per molecule obtained in homogeneous form. The obtained results are a promising approach for favorably modulating immune-reactivity and half-life by cysteine- specific PEGylation of SK to achieve therapeutic attributes desirable for the treatment of different circulatory disorders, such as ischemic stroke, myocardial infarction and pulmonary embolism.


Asunto(s)
Polietilenglicoles/metabolismo , Estreptoquinasa/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Polietilenglicoles/química , Estabilidad Proteica , Streptococcus/enzimología , Estreptoquinasa/química , Estreptoquinasa/genética , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA