Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104865, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37268160

RESUMEN

Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated. We observed that Syk Y346 in mouse platelets was still phosphorylated when GPVI-induced Syk activity was inhibited. We then generated Syk Y346F mice and analyzed the effect this mutation exerts on platelet responses. Syk Y346F mice bred normally, and their blood cell count was unaltered. We did observe potentiation of GPVI-induced platelet aggregation and ATP secretion as well as increased phosphorylation of other tyrosines on Syk in the Syk Y346F mouse platelets when compared to WT littermates. This phenotype was specific for GPVI-dependent activation, since it was not seen when AYPGKF, a PAR4 agonist, or 2-MeSADP, a purinergic receptor agonist, was used to activate platelets. Despite a clear effect of Syk Y346F on GPVI-mediated signaling and cellular responses, there was no effect of this mutation on hemostasis as measured by tail-bleeding times, although the time to thrombus formation determined using the ferric chloride injury model was reduced. Thus, our results indicate a significant effect of Syk Y346F on platelet activation and responses in vitro and reveal its complex nature manifesting itself by the diversified translation of platelet activation into physiological responses.


Asunto(s)
Plaquetas , Agregación Plaquetaria , Quinasa Syk , Animales , Ratones , Fosforilación , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Quinasa Syk/genética , Quinasa Syk/metabolismo , Tirosina
2.
Blood ; 139(13): 2050-2065, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34752599

RESUMEN

Although several members of protein disulfide isomerase (PDI) family support thrombosis, other PDI family members with the CXYC motif remain uninvestigated. ERp46 has 3 CGHC redox-active sites and a radically different molecular architecture than other PDIs. Expression of ERp46 on the platelet surface increased with thrombin stimulation. An anti-ERp46 antibody inhibited platelet aggregation, adenosine triphosphate (ATP) release, and αIIbß3 activation. ERp46 protein potentiated αIIbß3 activation, platelet aggregation, and ATP release, whereas inactive ERp46 inhibited these processes. ERp46 knockout mice had prolonged tail-bleeding times and decreased platelet accumulation in thrombosis models that was rescued by infusion of ERp46. ERp46-deficient platelets had decreased αIIbß3 activation, platelet aggregation, ATP release, and P-selectin expression. The defects were reversed by wild-type ERp46 and partially reversed by ERp46 containing any of the 3 active sites. Platelet aggregation stimulated by an αIIbß3-activating peptide was inhibited by the anti-ERp46 antibody and was decreased in ERp46-deficient platelets. ERp46 bound tightly to αIIbß3 by surface plasmon resonance but poorly to platelets lacking αIIbß3 and physically associated with αIIbß3 upon platelet activation. ERp46 mediated clot retraction and platelet spreading. ERp46 more strongly reduced disulfide bonds in the ß3 subunit than other PDIs and in contrast to PDI, generated thiols in ß3 independently of fibrinogen. ERp46 cleaved the Cys473-Cys503 disulfide bond in ß3, implicating a target for ERp46. Finally, ERp46-deficient platelets have decreased thiols in ß3, implying that ERp46 cleaves disulfide bonds in platelets. In conclusion, ERp46 is critical for platelet function and thrombosis and facilitates αIIbß3 activation by targeting disulfide bonds.


Asunto(s)
Hemostasis , Tiorredoxinas/metabolismo , Trombosis , Animales , Retículo Endoplásmico/metabolismo , Ratones , Ratones Noqueados , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/genética , Trombosis/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(10): 1808-1817, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345522

RESUMEN

BACKGROUND: Heparin-induced thrombocytopenia (HIT) is a major concern for all individuals that undergo cardiac bypass surgeries or require prolonged heparin exposure. HIT is a life- and limb-threatening adverse drug reaction with an immune response following the formation of ultra-large immune complexes that drive platelet activation through the receptor FcγRIIA. Thrombotic events remain high following the standard of care treatment with anticoagulants, while increasing risk of bleeding complications. This study sought to investigate a novel approach to treatment of HIT. Recent reports demonstrate increased procoagulant activity in HIT; however, these reports required analysis ex vivo, and relevance in vivo remains unclear. METHODS: Using human and mouse model systems, we investigated the cooperativity of PARs (protease-activated receptors) and FcγRIIA in HIT. We challenged humanized FcγRIIA transgenic mice with or without endogenous mouse Par4 (denoted as IIA-Par4+/+ or IIA-Par4-/-, respectively) with a well-established model IgG immune complex (anti [α]-CD9). Furthermore, we assessed the procoagulant phenotype and efficacy to treat HIT utilizing inhibitor of 12-LOX (12[S]-lipoxygenase), VLX-1005, previously reported to decrease platelet activation downstream of FcγRIIA and PAR4, using the triple allele HIT mouse model. RESULTS: IIA-Par4+/+ mice given αCD9 were severely thrombocytopenic, with extensive platelet-fibrin deposition in the lung. In contrast, IIA-Par4-/- mice had negligible thrombocytopenia or pulmonary platelet-fibrin thrombi. We observed that pharmacological inhibition of 12-LOX resulted in a significant reduction in both platelet procoagulant phenotype ex vivo, and thrombocytopenia and thrombosis in our humanized mouse model of HIT in vivo. CONCLUSIONS: These data demonstrate for the first time the need for dual platelet receptor (PAR and FcγRIIA) stimulation for fibrin formation in HIT in vivo. These results extend our understanding of HIT pathophysiology and provide a scientific rationale for targeting the procoagulant phenotype as a possible therapeutic strategy in HIT.


Asunto(s)
Trombocitopenia , Humanos , Ratones , Animales , Trombocitopenia/inducido químicamente , Heparina/efectos adversos , Plaquetas , Anticoagulantes/efectos adversos , Ratones Transgénicos , Fenotipo , Fibrina/genética , Factor Plaquetario 4/genética
4.
Platelets ; 35(1): 2369766, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38904212

RESUMEN

Receptor-induced tyrosine phosphorylation of spleen tyrosine kinase (Syk) has been studied extensively in hematopoietic cells. Metabolic mapping and high-resolution mass spectrometry, however, indicate that one of the most frequently detected phosphorylation sites encompassed S297 (S291 in mice) located within the linker B region of Syk. It has been reported that Protein kinase C (PKC) phosphorylates Syk S297, thus influencing Syk activity. However, conflicting studies suggest that this phosphorylation enhances as well as reduces Syk activity. To clarify the function of this site, we generated Syk S291A knock-in mice. We used platelets as a model system as they possess Glycoprotein VI (GPVI), a receptor containing an immunoreceptor tyrosine-based activation motif (ITAM) which transduces signals through Syk. Our analysis of the homozygous mice indicated that the knock-in platelets express only one isoform of Syk, while the wild-type expresses two isoforms at 69 and 66 kDa. When the GPVI receptor was activated with collagen-related peptide (CRP), we observed an increase in functional responses and phosphorylations in Syk S291A platelets. This potentiation did not occur with AYPGKF or 2-MeSADP, although they also activate PKC isoforms. Although there was potentiation of platelet functional responses, there was no difference in tail bleeding times. However, the time to occlusion in the FeCl3 injury model was enhanced. These data indicate that the effects of Syk S291 phosphorylation represent a significant outcome on platelet activation and signaling in vitro but also reveals its multifaceted nature demonstrated by the differential effects on physiological responses in vivo.


What is the context Spleen tyrosine kinase (Syk) is present a number of cells and important in controlling the functions of various cells and organs.Syk is known to exist in two isoforms Syk L (long form or Syk A) and Syk S (short form or Syk B).It is known that phosphorylation events regulate Syk activation and activity.In several inflammatory disease conditions, Syk mutants are known to play a role.Phosphorylation of the Syk residue Serine 291 is known to occur, but its function in the regulation of Syk activation or activity is not known.What is new In this study, we generated a mutant mouse Syk S291A, which cannot be phosphorylated on serine residue. We evaluated the function of platelets isolated from these mice and compared them to platelets isolated from wild type littermates.We observed that the mutation in Syk L unexpectedly caused Syk S to disappear from a number of tissues.Platelet functions are enhanced in mutant mouse platelets compared to those from wild-type mice.What is the impact These studies enhance our understanding of the impact of Serine 291 phosphorylation on the function of Syk in platelets.


Asunto(s)
Plaquetas , Transducción de Señal , Quinasa Syk , Animales , Quinasa Syk/metabolismo , Plaquetas/metabolismo , Ratones , Fosforilación , Motivo de Activación del Inmunorreceptor Basado en Tirosina , Técnicas de Sustitución del Gen , Humanos , Glicoproteínas de Membrana Plaquetaria/metabolismo , Activación Plaquetaria
5.
J Biol Chem ; 298(8): 102189, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753354

RESUMEN

Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.


Asunto(s)
Glicoproteínas de Membrana Plaquetaria , Quinasa Syk/metabolismo , Tirosina , Animales , Plaquetas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Fosforilación , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Inmunológicos/metabolismo , Quinasa Syk/genética , Tirosina/metabolismo
6.
Platelets ; 34(1): 2249549, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661351

RESUMEN

Alternate splicing is among the regulatory mechanisms imparting functional diversity in proteins. Studying protein isoforms generated through alternative splicing is therefore critical for understanding protein functions in many biological systems. Spleen tyrosine kinase (Syk) plays an essential role in ITAM/hemITAM signaling in many cell types, including platelets. However, the spectrum of Syk isoforms expressed in platelets has not been characterized. Syk has been shown to have a full-length long isoform SykL and a shorter SykS lacking 23 amino acid residues within its interdomain B. Furthermore, putative isoforms lacking another 23 amino acid-long sequence or a combination of the two deletions have been postulated to exist. In this report, we demonstrate that mouse platelets express full-length SykL and the previously described shorter isoform SykS, but lack other shorter isoforms, whereas human platelets express predominantly SykL. These results both indicate a possible role of alternative Syk splicing in the regulation of receptor signaling in mouse platelets and a difference between signaling regulation in mouse and human platelets.


Platelets express two sizes of the Syk molecule with possible alternate functions in the cell. We need to understand how these two differ in their structure so that further studies can be developed by selectively deleting one of them to evaluate their function in platelets. This study shows that platelet Syk molecules differ in their structure with and without a linker region in the molecule.


Asunto(s)
Aminoácidos , Plaquetas , Humanos , Animales , Ratones , Quinasa Syk/genética , Isoformas de Proteínas/genética , Secuencia de Aminoácidos
7.
J Biol Chem ; 296: 100720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33932405

RESUMEN

Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation. However, the mechanism by which PKCδ regulates this process as well as other facets of platelet activity is unknown. We speculated that the way PKCδ regulates platelet function may be because of the phosphorylation of tyrosine residues on PKCδ. We investigated phosphorylation of PKCδ following glycoprotein VI-mediated and PAR4-mediated platelet activation and found that Y311 is selectively phosphorylated when PAR4 is activated in human platelets. Therefore, we generated PKCδ Y311F knock-in mice, which are viable and have no gross abnormalities. However, PKCδY311F mice have significantly enhanced tail-bleeding times compared with WT littermate controls, which means hemostasis is interrupted. Furthermore, PKCδY311F mice exhibit longer time to carotid artery occlusion compared with WT control using a ferric chloride in vivo thrombosis model, indicating that the phosphorylation of PKCδ Y311 is prothrombotic. Washed platelets from PKCδY311F mice have reduced reactivity after stimulation with a PAR-4 agonist indicating its importance in platelet signaling. The phenotype observed in Y311F mouse platelets is because of reduced thromboxane generation, as an inhibitor of thromboxane generation equalizes the PKCδY311F platelet response to that of WT. Therefore, phosphorylation of PKCδ on Y311 is important for regulation of platelet function and specifically thromboxane generation, which reinforces platelet activation.


Asunto(s)
Plaquetas/metabolismo , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Tromboxanos/biosíntesis , Tirosina/metabolismo , Animales , Humanos , Ratones , Modelos Moleculares , Fosforilación , Conformación Proteica
8.
Platelets ; 33(8): 1301-1306, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35514261

RESUMEN

Platelet activation by adenosine diphosphate (ADP) is mediated through two G-protein-coupled receptors, P2Y1 and P2Y12, which signal through Gq and Gi, respectively. P2Y1 stimulation leads to phospholipase C activation and an increase in cytosolic calcium necessary for CalDAG-GEF1 activation. Engagement of P2Y12 inhibits adenylate cyclase, which reduces cAMP, and activation of PI3-kinase, which inhibits RASA3 resulting in sustained activated Rap1b. In this study we activated human platelets with 2-MeSADP in the presence of LY294002, a PI3-kinase inhibitor, AR-C69931MX, a P2Y12 antagonist or MRS2179, a P2Y1 antagonist. We measured the phosphorylation of Akt on Ser473 as an indicator of PI3-kinase activity. As previously shown, LY294002 and ARC69931MX abolished 2MeSADP-induced Akt phosphorylation. MRS2179 reduced ADP-induced Akt phosphorylation but did not abolish it. Rap1b activation, however, was only reduced, but not ablated, using LY294002 and was completely inhibited by ARC69931MX or MRS2179. Furthermore, 2MeSADP-induced Rap1b activation was abolished in either P2Y1 or P2Y12 null platelets. These data suggest that ADP-induced Rap1b activation requires both P2Y1 and P2Y12. In addition, although stimulation of P2Y12 results in PI3-kinase activation leading to Akt phosphorylation and Rap1b activation, Rap1b activation can occur independently of PI3-kinase downstream of P2Y12. Thus, we propose that the P2Y12 receptor can regulate Rap1b, possibly through RASA3, in a pathway independent of PI3-kinase.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores Purinérgicos P2 , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenilil Ciclasas/metabolismo , Plaquetas/metabolismo , Calcio/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antagonistas del Receptor Purinérgico P2Y , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Tionucleótidos , Fosfolipasas de Tipo C/metabolismo , Proteínas de Unión al GTP rap/metabolismo
9.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499237

RESUMEN

The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review.


Asunto(s)
Activación Plaquetaria , Transducción de Señal , Quinasa Syk/metabolismo , Plaquetas/metabolismo , Fosforilación/fisiología
10.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232816

RESUMEN

Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. Rap1b activity was reduced in platelets from PDS25, while VASP phosphorylation was enhanced, suggesting that signaling from the P2Y12 receptor was interrupted by the heterozygous mutation. To explore this further, we produced knock-in mice that mimic our subject. Bleeding failed to cease in homozygous KI mice during tail bleeding assays, while tail bleeding times did not differ between WT and heterozygous KI mice. Furthermore, occlusions failed to form in most homozygous KI mice following carotid artery injury via FeCl3. These data indicate that the aspartic acid residue found in the DRY motif of P2Y12 is essential for P2Y12 function.


Asunto(s)
Plaquetas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Adenosina Difosfato/metabolismo , Animales , Ácido Aspártico/metabolismo , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Ratones , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genética
11.
Circulation ; 142(8): 758-775, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32489148

RESUMEN

BACKGROUND: Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial. METHODS: We analyzed protease-activated receptor 4 (Par4) expression in mouse hearts with MI and investigated the effects of Par4 deletion on cardiac remodeling and function after MI by echocardiography, quantitative immunohistochemistry, and flow cytometry. RESULTS: Par4 mRNA and protein levels were increased in mouse hearts after MI and in isolated cardiomyocytes in response to hypertrophic and inflammatory stimuli. Par4-deficient mice showed less myocyte apoptosis, reduced infarct size, and improved functional recovery after acute MI relative to wild-type (WT). Conversely, Par4-/- mice showed impaired cardiac function, greater rates of myocardial rupture, and increased mortality after chronic MI relative to WT. Pathological evaluation of hearts from Par4-/- mice demonstrated a greater infarct expansion, increased cardiac hemorrhage, and delayed neutrophil accumulation, which resulted in impaired post-MI healing compared with WT. Par4 deficiency also attenuated neutrophil apoptosis in vitro and after MI in vivo and impaired inflammation resolution in infarcted myocardium. Transfer of Par4-/- neutrophils, but not of Par4-/- platelets, in WT recipient mice delayed inflammation resolution, increased cardiac hemorrhage, and enhanced cardiac dysfunction. In parallel, adoptive transfer of WT neutrophils into Par4-/- mice restored inflammation resolution, reduced cardiac rupture incidence, and improved cardiac function after MI. CONCLUSIONS: These findings reveal essential roles of Par4 in neutrophil apoptosis and inflammation resolution during myocardial healing and point to Par4 inhibition as a potential therapy that should be limited to the acute phases of ischemic insult and avoided for long-term treatment after MI.


Asunto(s)
Regulación de la Expresión Génica , Rotura Cardíaca , Infarto del Miocardio , Miocardio/metabolismo , Receptores de Trombina/deficiencia , Animales , Femenino , Rotura Cardíaca/etiología , Rotura Cardíaca/genética , Rotura Cardíaca/metabolismo , Rotura Cardíaca/prevención & control , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/clasificación , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Receptores de Trombina/biosíntesis
12.
Platelets ; 32(6): 832-837, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811251

RESUMEN

PI-3 Kinase plays an important role in platelet activation mainly through regulation of RASA3. Akt phosphorylation is an indicator for the activity of PI3 kinase. The aim of this study is to characterize the pathways leading to Akt phosphorylation in platelets. We performed concentration response curves of LY294002, a pan-PI3 kinase inhibitor, on platelet aggregation and Akt phosphorylation, in washed human and mouse platelets. At concentrations as low as 3.12 µM, LY294002 abolished Akt phosphorylation induced by 2MeSADP and SFLLRN, but not by AYPGKF. It required much higher concentrations of LY294002 (12.5-25 µM) to abolish AYPGKF-induced Akt phosphorylation, both in wild type and P2Y12 null mouse platelets. We propose that 3.12 µM LY294002 is sufficient to inhibit PI3 kinase isoforms in platelets and higher concentrations might inhibit other pathways regulating Akt phosphorylation by AYPGKF. We conclude that Protease-activated receptor 4 (PAR4) might cause Akt phosphorylation through pathways distinctly different from those of Protease-activated receptor 1 (PAR1).


Asunto(s)
Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Trombina/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación
13.
J Biol Chem ; 294(33): 12547-12554, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266805

RESUMEN

Protein tyrosine phosphatase nonreceptor type 7 (PTPN7), also called hematopoietic protein tyrosine phosphatase, controls extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase in T lymphocytes. Because ERK1/2 plays an important role in regulating thromboxane A2 (TXA2) generation in platelets, we investigated the function of PTPN7 in these cells. Using immunoblot analysis, we detected PTPN7 in both human and mouse platelets but not in PTPN7-null mice. PTPN7 KO mouse platelets exhibited increased platelet functional responses, including aggregation, dense granule secretion, and TXA2 generation, compared with platelets from WT littermates, upon stimulation with both G protein-coupled receptor (GPCR) and glycoprotein VI (GPVI) agonists. Using the GPCR agonist AYPGKF in the presence of the COX inhibitor indomethacin, we found that PTPN7 KO mouse platelets aggregated and secreted to the same extent as WT platelets, suggesting that elevated TXA2 is responsible for the potentiation of platelet functional responses in PTPN7-KO platelets. Phosphorylation of ERK1/2 was also elevated in PTPN7 KO platelets. Stimulation of platelets with the GPVI agonist collagen-related peptide along with the COX inhibitor indomethacin did not result in phosphorylation of ERK1/2, indicating that GPVI-mediated ERK phosphorylation occurs through TXA2 Although bleeding times did not significantly differ between PTPN7-null and WT mice, time to death was significantly faster in PTPN7-null mice than in WT mice in a pulmonary thromboembolism model. We conclude that PTPN7 regulates platelet functional responses downstream of GPCR agonists, but not GPVI agonists, through inhibition of ERK activation and thromboxane generation.


Asunto(s)
Plaquetas/enzimología , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Embolia Pulmonar/enzimología , Animales , Plaquetas/patología , Modelos Animales de Enfermedad , Activación Enzimática , Humanos , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Oligopéptidos/farmacología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Embolia Pulmonar/genética , Embolia Pulmonar/patología
14.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013235

RESUMEN

In sepsis, platelets may become activated via toll-like receptors (TLRs), causing microvascular thrombosis. Megakaryocytes (MKs) also express these receptors; thus, severe infection may modulate thrombopoiesis. To explore the relevance of altered miRNAs in platelet activation upon sepsis, we first investigated sepsis-induced miRNA expression in platelets of septic patients. The effect of abnormal Dicer level on miRNA expression was also evaluated. miRNAs were profiled in septic vs. normal platelets using TaqMan Open Array. We validated platelet miR-26b with its target SELP (P-selectin) mRNA levels and correlated them with clinical outcomes. The impact of sepsis on MK transcriptome was analyzed in MEG-01 cells after lipopolysaccharide (LPS) treatment by RNA-seq. Sepsis-reduced miR-26b was further studied using Dicer1 siRNA and calpain inhibition in MEG-01 cells. Out of 390 platelet miRNAs detected, there were 121 significantly decreased, and 61 upregulated in sepsis vs. controls. Septic platelets showed attenuated miR-26b, which were associated with disease severity and mortality. SELP mRNA level was elevated in sepsis, especially in platelets with increased mean platelet volume, causing higher P-selectin expression. Downregulation of Dicer1 generated lower miR-26b with higher SELP mRNA, while calpeptin restored miR-26b in MEG-01 cells. In conclusion, decreased miR-26b in MKs and platelets contributes to an increased level of platelet activation status in sepsis.


Asunto(s)
Plaquetas/metabolismo , Regulación de la Expresión Génica , Megacariocitos/metabolismo , MicroARNs/biosíntesis , Activación Plaquetaria , Sepsis/metabolismo , Adulto , Anciano , Plaquetas/patología , Femenino , Humanos , Masculino , Megacariocitos/patología , Persona de Mediana Edad , Sepsis/patología
15.
J Biol Chem ; 292(35): 14516-14531, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28705934

RESUMEN

Platelets play a key role in the physiological hemostasis or pathological process of thrombosis. Rhodocytin, an agonist of the C-type lectin-like receptor-2 (CLEC-2), elicits powerful platelet activation signals in conjunction with Src family kinases (SFKs), spleen tyrosine kinase (Syk), and phospholipase γ2 (PLCγ2). Previous reports have shown that rhodocytin-induced platelet aggregation depends on secondary mediators such as thromboxane A2 (TxA2) and ADP, which are agonists for G-protein-coupled receptors (GPCRs) on platelets. How the secondary mediators regulate CLEC-2-mediated platelet activation in terms of signaling is not clearly defined. In this study, we report that CLEC-2-induced Syk and PLCγ2 phosphorylation is potentiated by TxA2 and that TxA2 plays a critical role in the most proximal event of CLEC-2 signaling, i.e. the CLEC-2 receptor tyrosine phosphorylation. We show that the activation of other GPCRs, such as the ADP receptors and protease-activated receptors, can also potentiate CLEC-2 signaling. By using the specific Gq inhibitor, UBO-QIC, or Gq knock-out murine platelets, we demonstrate that Gq signaling, but not other G-proteins, is essential for GPCR-induced potentiation of Syk phosphorylation downstream of CLEC-2. We further elucidated the signaling downstream of Gq and identified an important role for the PLCß-PKCα pathway, possibly regulating activation of SFKs, which are crucial for initiation of CLEC-2 signaling. Together, these results provide evidence for novel Gq-PLCß-PKCα-mediated regulation of proximal CLEC-2 signaling by Gq-coupled receptors.


Asunto(s)
Plaquetas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Lectinas Tipo C/agonistas , Modelos Biológicos , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal , Venenos de Víboras/farmacología , Animales , Plaquetas/efectos de los fármacos , Coagulantes/farmacología , Depsipéptidos/farmacología , Inhibidores Enzimáticos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Humanos , Lectinas Tipo C/metabolismo , Ratones Noqueados , Fosfolipasa C gamma/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Transducción de Señal/efectos de los fármacos , Organismos Libres de Patógenos Específicos , Quinasa Syk/metabolismo , Tromboxano A2/agonistas , Tromboxano A2/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
16.
Circulation ; 136(9): 817-833, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28637879

RESUMEN

BACKGROUND: Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. METHODS: We measured P2Y12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y12 receptor expression in megakaryocytes. RESULTS: Platelet P2Y12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y12 expression correlates with ADP-induced platelet aggregation (r=0.89, P<0.01). P2Y12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P<0.05). Using a FeCl3-injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P<0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y12 receptor expression in diabetes mellitus. CONCLUSIONS: Platelet P2Y12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus.


Asunto(s)
Plaquetas/metabolismo , Diabetes Mellitus Tipo 2/patología , Receptores Purinérgicos P2Y12/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Cloruros/toxicidad , AMP Cíclico/análisis , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Agonismo Inverso de Drogas , Compuestos Férricos/toxicidad , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Humanos , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , FN-kappa B/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Trombosis/inducido químicamente , Trombosis/tratamiento farmacológico , Trombosis/patología
17.
Circ Res ; 119(11): 1226-1241, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27992360

RESUMEN

RATIONALE: Patients with chronic kidney disease (CKD) develop hyperhomocysteinemia and have a higher cardiovascular mortality than those without hyperhomocysteinemia by 10-fold. OBJECTIVE: We investigated monocyte differentiation in human CKD and cardiovascular disease (CVD). METHODS AND RESULTS: We identified CD40 as a CKD-related monocyte activation gene using CKD-monocyte -mRNA array analysis and classified CD40 monocyte (CD40+CD14+) as a stronger inflammatory subset than the intermediate monocyte (CD14++CD16+) subset. We recruited 27 patients with CVD/CKD and 14 healthy subjects and found that CD40/CD40 classical/CD40 intermediate monocyte (CD40+CD14+/CD40+CD14++CD16-/CD40+CD14++CD16+), plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine levels were higher in CVD and further elevated in CVD+CKD. CD40 and CD40 intermediate subsets were positively correlated with plasma/cellular homocysteine levels, S-adenosylhomocysteine and S-adenosylmethionine but negatively correlated with estimated glomerular filtration rate. Hyperhomocysteinemia was established as a likely mediator for CKD-induced CD40 intermediate monocyte, and reduced S-adenosylhomocysteine/S-adenosylmethionine was established for CKD-induced CD40/CD40 intermediate monocyte. Soluble CD40 ligand, tumor necrosis factor (TNF)-α/interleukin (IL)-6/interferon (IFN)-γ levels were elevated in CVD/CKD. CKD serum/homocysteine/CD40L/increased TNF-α/IL-6/IFN-γ-induced CD40/CD40 intermediate monocyte in peripheral blood monocyte. Homocysteine and CKD serum-induced CD40 monocyte were prevented by neutralizing antibodies against CD40L/TNF-α/IL-6. DNA hypomethylation was found on nuclear factor-κB consensus element in CD40 promoter in white blood cells from patients with CKD with lower S-adenosylmethionine / S-adenosylhomocysteine ratios. Finally, homocysteine inhibited DNA methyltransferase-1 activity and promoted CD40 intermediate monocyte differentiation, which was reversed by folic acid in peripheral blood monocyte. CONCLUSIONS: CD40 monocyte is a novel inflammatory monocyte subset that appears to be a biomarker for CKD severity. Hyperhomocysteinemia mediates CD40 monocyte differentiation via soluble CD40 ligand induction and CD40 DNA hypomethylation in CKD.


Asunto(s)
Antígenos CD40/sangre , Metilación de ADN/fisiología , Homocisteína/sangre , Monocitos/metabolismo , Insuficiencia Renal Crónica/sangre , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/patología , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/patología , Insuficiencia Renal Crónica/patología
18.
J Biol Chem ; 291(43): 22427-22441, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27609517

RESUMEN

Protein-tyrosine phosphatase TULA-2 has been shown to regulate receptor signaling in several cell types, including platelets. Platelets are critical for maintaining vascular integrity; this function is mediated by platelet aggregation in response to recognition of the exposed basement membrane collagen by the GPVI receptor, which is non-covalently associated with the signal-transducing FcRγ polypeptide chain. Our previous studies suggested that TULA-2 plays an important role in negatively regulating signaling through GPVI-FcRγ and indicated that the tyrosine-protein kinase Syk is a key target of the regulatory action of TULA-2 in platelets. However, the molecular basis of the down-regulatory effect of TULA-2 on Syk activation via FcRγ remained unclear. In this study, we demonstrate that suppression of Syk activation by TULA-2 is mediated, to a substantial degree, by dephosphorylation of Tyr(P)346, a regulatory site of Syk, which becomes phosphorylated soon after receptor ligation and plays a critical role in initiating the process that yields fully activated Syk. TULA-2 is capable of dephosphorylating Tyr(P)346 with high efficiency, thus controlling the overall activation of Syk, but is less efficient in dephosphorylating other regulatory sites of this kinase. Therefore, dephosphorylation of Tyr(P)346 may be considered an important "checkpoint" in the regulation of Syk activation process. Putative biological functions of TULA-2-mediated dephosphorylation of Tyr(P)346 may include deactivation of receptor-activated Syk or suppression of Syk activation by suboptimal stimulation.


Asunto(s)
Plaquetas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Quinasa Syk/metabolismo , Animales , Ratones , Ratones Mutantes , Fosforilación/fisiología , Glicoproteínas de Membrana Plaquetaria/genética , Proteínas Tirosina Fosfatasas/genética , Quinasa Syk/genética
19.
J Biol Chem ; 291(10): 4939-54, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26733204

RESUMEN

Interleukin-17 (IL-17)-secreting T helper 17 cells were recently identified as a CD4(+) T helper subset and implicated in various inflammatory and autoimmune diseases. The issues of whether and by what mechanism hyperlipidemic stress induces IL-17A to activate aortic endothelial cells (ECs) and enhance monocyte adhesion remained largely unknown. Using biochemical, immunological, microarray, experimental data mining analysis, and pathological approaches focused on primary human and mouse aortic ECs (HAECs and MAECs) and our newly generated apolipoprotein E (ApoE)(-/-)/IL-17A(-/-) mice, we report the following new findings. 1) The hyperlipidemia stimulus oxidized low density lipoprotein up-regulated IL-17 receptor(s) in HAECs and MAECs. 2) IL-17A activated HAECs and increased human monocyte adhesion in vitro. 3) A deficiency of IL-17A reduced leukocyte adhesion to endothelium in vivo. 3) IL-17A activated HAECs and MAECs via up-regulation of proinflammatory cytokines IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokine CXC motif ligand 1 (CXCL1), and CXCL2. 4) IL-17A activated ECs specifically via the p38 mitogen-activated protein kinases (MAPK) pathway; the inhibition of p38 MAPK in ECs attenuated IL-17A-mediated activation by ameliorating the expression of the aforementioned proinflammatory cytokines, chemokines, and EC adhesion molecules including intercellular adhesion molecule 1. Taken together, our results demonstrate for the first time that IL-17A activates aortic ECs specifically via p38 MAPK pathway.


Asunto(s)
Apolipoproteínas E/metabolismo , Células Endoteliales/metabolismo , Hiperlipidemias/metabolismo , Interleucina-17/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Aorta/citología , Aorta/metabolismo , Apolipoproteínas E/genética , Adhesión Celular , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Interleucina-17/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/fisiología , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo
20.
Blood ; 125(1): 175-84, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25331114

RESUMEN

Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated after translocation to the membrane through Gi signaling pathways by a phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared with adenosine 5'-diphosphate in platelets. This study investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor agonists caused translocation of Akt to the membrane rapidly, whereas phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq pathways. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3K/PIP3/Gi-independent mechanism. An Akt scaffolding protein, p21-activated kinase (PAK), translocates to the membrane after stimulation with protease-activated receptor agonists in a Gq-dependent manner, with the kinetics of translocation similar to that of Akt. Coimmunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a possible role of PAK in Akt translocation. These results show, for the first time, an important role of the Gq pathway in mediating Akt translocation to the membrane in a novel Gi/PI3K/PIP3-independent mechanism.


Asunto(s)
Plaquetas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Agregación Plaquetaria , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Transporte Biológico , Plaquetas/citología , Membrana Celular/metabolismo , Humanos , Ratones , Fosforilación , Transporte de Proteínas , Transducción de Señal , Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA