Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Methods ; 186: 42-51, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32758682

RESUMEN

The rumen microbiome constitutes a dense and complex mixture of anaerobic bacteria, archaea, protozoa, virus and fungi. Collectively, rumen microbial populations interact closely in order to degrade and ferment complex plant material into nutrients for host metabolism, a process which also produces other by-products, such as methane gas. Our understanding of the rumen microbiome and its functions are of both scientific and industrial interest, as the metabolic functions are connected to animal health and nutrition, but at the same time contribute significantly to global greenhouse gas emissions. While many of the major microbial members of the rumen microbiome are acknowledged, advances in modern culture-independent meta-omic techniques, such as metaproteomics, enable deep exploration into active microbial populations involved in essential rumen metabolic functions. Meaningful and accurate metaproteomic analyses are highly dependent on representative samples, precise protein extraction and fractionation, as well as a comprehensive and high-quality protein sequence database that enables precise protein identification and quantification. This review focuses on the application of rumen metaproteomics, and its potential towards understanding the complex rumen microbiome and its metabolic functions. We present and discuss current methods in sample handling, protein extraction and data analysis for rumen metaproteomics, and finally emphasize the potential of (meta)genome-integrated metaproteomics for accurate reconstruction of active microbial populations in the rumen.


Asunto(s)
Crianza de Animales Domésticos/métodos , Microbioma Gastrointestinal/fisiología , Metagenómica/métodos , Proteómica/métodos , Rumen/microbiología , Animales , Interacciones Microbiota-Huesped/fisiología , Ganado/microbiología , Ganado/fisiología , Metagenoma , Sitios de Carácter Cuantitativo/fisiología , Rumiantes/microbiología , Rumiantes/fisiología
2.
Adv Exp Med Biol ; 1073: 187-215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236844

RESUMEN

Meta-omic techniques have progressed rapidly in the past decade and are frequently used in microbial ecology to study microorganisms in their natural ecosystems independent from culture restrictions. Metaproteomics, in combination with metagenomics, enables quantitative assessment of expressed proteins and pathways from individual members of the consortium. Together, metaproteomics and metagenomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples. Here, we outline key aspects of sample preparation, database generation, and other methodological considerations that are required for successful quantitative metaproteomic analyses and we describe case studies on the integration with metagenomics for enhanced functional output.


Asunto(s)
Metagenómica , Consorcios Microbianos , Proteómica , Manejo de Especímenes/métodos , Proteínas
3.
Nat Rev Microbiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039286

RESUMEN

The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.

4.
Nat Ecol Evol ; 8(1): 32-44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957315

RESUMEN

Predicting the behaviour of complex microbial communities is challenging. However, this is essential for complex biotechnological processes such as those in biological wastewater treatment plants (BWWTPs), which require sustainable operation. Here we summarize 14 months of longitudinal meta-omics data from a BWWTP anaerobic tank into 17 temporal signals, explaining 91.1% of the temporal variance, and link those signals to ecological events within the community. We forecast the signals over the subsequent five years and use 21 extra samples collected at defined time intervals for testing and validation. Our forecasts are correct for six signals and hint on phenomena such as predation cycles. Using all the 17 forecasts and the environmental variables, we predict gene abundance and expression, with a coefficient of determination ≥0.87 for the subsequent three years. Our study demonstrates the ability to forecast the dynamics of open microbial ecosystems using interactions between community cycles and environmental parameters.


Asunto(s)
Microbiota , Aguas Residuales
5.
Nat Microbiol ; 7(4): 556-569, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365790

RESUMEN

Processed foods often include food additives such as xanthan gum, a complex polysaccharide with unique rheological properties, that has established widespread use as a stabilizer and thickening agent. Xanthan gum's chemical structure is distinct from those of host and dietary polysaccharides that are more commonly expected to transit the gastrointestinal tract, and little is known about its direct interaction with the gut microbiota, which plays a central role in digestion of other dietary fibre polysaccharides. Here we show that the ability to digest xanthan gum is common in human gut microbiomes from industrialized countries and appears contingent on a single uncultured bacterium in the family Ruminococcaceae. Our data reveal that this primary degrader cleaves the xanthan gum backbone before processing the released oligosaccharides using additional enzymes. Some individuals harbour Bacteroides intestinalis that is incapable of consuming polymeric xanthan gum but grows on oligosaccharide products generated by the Ruminococcaceae. Feeding xanthan gum to germfree mice colonized with a human microbiota containing the uncultured Ruminococcaceae supports the idea that the additive xanthan gum can drive expansion of the primary degrader Ruminococcaceae, along with exogenously introduced B. intestinalis. Our work demonstrates the existence of a potential xanthan gum food chain involving at least two members of different phyla of gut bacteria and provides an initial framework for understanding how widespread consumption of a recently introduced food additive influences human microbiomes.


Asunto(s)
Microbioma Gastrointestinal , Animales , Fibras de la Dieta , Aditivos Alimentarios , Humanos , Ratones , Polisacáridos Bacterianos
6.
F1000Res ; 10: 103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484688

RESUMEN

The Earth Microbiome Project (EMP) aided in understanding the role of microbial communities and the influence of collective genetic material (the 'microbiome') and microbial diversity patterns across the habitats of our planet. With the evolution of new sequencing technologies, researchers can now investigate the microbiome and map its influence on the environment and human health. Advances in bioinformatics methods for next-generation sequencing (NGS) data analysis have helped researchers to gain an in-depth knowledge about the taxonomic and genetic composition of microbial communities. Metagenomic-based methods have been the most commonly used approaches for microbiome analysis; however, it primarily extracts information about taxonomic composition and genetic potential of the microbiome under study, lacking quantification of the gene products (RNA and proteins). On the other hand, metatranscriptomics, the study of a microbial community's RNA expression, can reveal the dynamic gene expression of individual microbial populations and the community as a whole, ultimately providing information about the active pathways in the microbiome.  In order to address the analysis of NGS data, the ASaiM analysis framework was previously developed and made available via the Galaxy platform. Although developed for both metagenomics and metatranscriptomics, the original publication demonstrated the use of ASaiM only for metagenomics, while thorough testing for metatranscriptomics data was lacking.  In the current study, we have focused on validating and optimizing the tools within ASaiM for metatranscriptomics data. As a result, we deliver a robust workflow that will enable researchers to understand dynamic functional response of the microbiome in a wide variety of metatranscriptomics studies. This improved and optimized ASaiM-metatranscriptomics (ASaiM-MT) workflow is publicly available via the ASaiM framework, documented and supported with training material so that users can interrogate and characterize metatranscriptomic data, as part of larger meta-omic studies of microbiomes.


Asunto(s)
Metagenómica , Microbiota , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Microbiota/genética , Flujo de Trabajo
7.
Microbiome ; 9(1): 243, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930457

RESUMEN

Through connecting genomic and metabolic information, metaproteomics is an essential approach for understanding how microbiomes function in space and time. The international metaproteomics community is delighted to announce the launch of the Metaproteomics Initiative (www.metaproteomics.org), the goal of which is to promote dissemination of metaproteomics fundamentals, advancements, and applications through collaborative networking in microbiome research. The Initiative aims to be the central information hub and open meeting place where newcomers and experts interact to communicate, standardize, and accelerate experimental and bioinformatic methodologies in this field. We invite the entire microbiome community to join and discuss potential synergies at the interfaces with other disciplines, and to collectively promote innovative approaches to gain deeper insights into microbiome functions and dynamics. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Biología Computacional , Microbioma Gastrointestinal/genética , Genómica , Microbiota/genética , Proteómica/métodos
8.
Nat Microbiol ; 6(1): 123-135, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139880

RESUMEN

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE-host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR-Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid-host and phage-host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant 'Candidatus Microthrix parvicella' population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes.


Asunto(s)
Bacterias/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Interacciones Microbianas/genética , Plásmidos/genética , Bacterias/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Bacteriano/genética , Metagenoma/genética , Consorcios Microbianos/genética , Interacciones Microbianas/fisiología , Aguas del Alcantarillado/microbiología , Purificación del Agua
9.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911965

RESUMEN

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/química , Heces/microbiología , Proteómica/métodos , Adulto , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Femenino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiología , Laboratorios , Espectrometría de Masas , Péptidos/química , Flujo de Trabajo
10.
Nat Commun ; 11(1): 5281, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077707

RESUMEN

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Microbiota , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Reactores Biológicos/microbiología , Ecosistema , Metabolómica , Metagenoma , Metagenómica , Proteómica , Factores de Tiempo
11.
ISME J ; 13(3): 603-617, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30315317

RESUMEN

Microbial communities that degrade lignocellulosic biomass are typified by high levels of species- and strain-level complexity, as well as synergistic interactions between both cellulolytic and non-cellulolytic microorganisms. Coprothermobacter proteolyticus frequently dominates thermophilic, lignocellulose-degrading communities with wide geographical distribution, which is in contrast to reports that it ferments proteinaceous substrates and is incapable of polysaccharide hydrolysis. Here we deconvolute a highly efficient cellulose-degrading consortium (SEM1b) that is co-dominated by Clostridium (Ruminiclostridium) thermocellum and multiple heterogenic strains affiliated to C. proteolyticus. Metagenomic analysis of SEM1b recovered metagenome-assembled genomes (MAGs) for each constituent population, whereas in parallel two novel strains of C. proteolyticus were successfully isolated and sequenced. Annotation of all C. proteolyticus genotypes (two strains and one MAG) revealed their genetic acquisition of carbohydrate-active enzymes (CAZymes), presumably derived from horizontal gene transfer (HGT) events involving polysaccharide-degrading Firmicutes or Thermotogae-affiliated populations that are historically co-located. HGT material included a saccharolytic operon, from which a CAZyme was biochemically characterized and demonstrated hydrolysis of multiple hemicellulose polysaccharides. Finally, temporal genome-resolved metatranscriptomic analysis of SEM1b revealed expression of C. proteolyticus CAZymes at different SEM1b life stages as well as co-expression of CAZymes from multiple SEM1b populations, inferring deeper microbial interactions that are dedicated toward community degradation of cellulose and hemicellulose. We show that C. proteolyticus, a ubiquitous population, consists of closely related strains that have adapted via HGT to presumably degrade both oligo- and longer polysaccharides present in decaying plants and microbial cell walls, thus explaining its dominance in thermophilic anaerobic digesters on a global scale.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Evolución Molecular , Metagenoma , Polisacáridos/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Celulosa/metabolismo , Hidrólisis , Lignina/metabolismo , Metagenómica
12.
Methods Mol Biol ; 1588: 255-277, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28417375

RESUMEN

Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). However, the inability to culture the majority of microorganisms that exist in natural ecosystems using common culture-dependent techniques restricts access to potentially novel cellulolytic bacteria and beneficial enzymes. The development of molecular-based culture-independent methods such as metagenomics enables researchers to study microbial communities directly from environmental samples, and presents a platform from which enzymes of interest can be sourced. We outline key methodological stages that are required as well as describe specific protocols that are currently used for metagenomic projects dedicated to CAZyme discovery.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Enzimas/análisis , Enzimas/genética , Metagenómica/métodos , Algoritmos , Celulosa/metabolismo , Glicósido Hidrolasas , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA