Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 27(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335157

RESUMEN

In the search for new anti-HIV-1 agents, two forms of phenylamino-phenoxy-quinoline derivatives have been synthesized, namely, 2-phenylamino-4-phenoxy-quinoline and 6-phenylamino-4-phenoxy-quinoline. In this study, the binding interactions of phenylamino-phenoxy-quinoline derivatives and six commercially available drugs (hydroxychloroquine, ritonavir, remdesivir, S-217622, N3, and PF-07321332) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) were investigated using molecular docking and the ONIOM method. The molecular docking showed the hydrogen bonding and hydrophobic interactions of all the compounds in the pocket of SARS-CoV-2 main protease (Mpro), which plays an important role for the division and proliferation of the virus into the cell. The binding free energy values between the ligands and Mpro ranged from -7.06 to -10.61 kcal/mol. The molecular docking and ONIOM results suggested that 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline and 4-(4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline have low binding energy values and appropriate molecular properties; moreover, both compounds could bind to Mpro via hydrogen bonding and Pi-Pi stacking interactions with amino acid residues, namely, HIS41, GLU166, and GLN192. These amino acids are related to the proteolytic cleavage process of the catalytic triad mechanisms. Therefore, this study provides important information for further studies on synthetic quinoline derivatives as antiviral candidates in the treatment of SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Quinolinas , Cisteína Endopeptidasas/química , Humanos , Lactamas , Leucina , Simulación del Acoplamiento Molecular , Nitrilos , Péptido Hidrolasas , Prolina , Quinolinas/farmacología , SARS-CoV-2 , Proteínas Virales/metabolismo
2.
Molecules ; 27(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056776

RESUMEN

New target molecules, namely, 2-phenylamino-4-phenoxyquinoline derivatives, were designed using a molecular hybridization approach, which was accomplished by fusing the pharmacophore structures of three currently available drugs: nevirapine, efavirenz, and rilpivirine. The discovery of disubstituted quinoline indicated that the pyridinylamino substituent at the 2-position of quinoline plays an important role in its inhibitory activity against HIV-1 RT. The highly potent HIV-1 RT inhibitors, namely, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6b) and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6d) exhibited half-maximal inhibitory concentrations (IC50) of 1.93 and 1.22 µM, respectively, which are similar to that of nevirapine (IC50 = 1.05 µM). The molecular docking results for these two compounds showed that both compounds interacted with Lys101, His235, and Pro236 residues through hydrogen bonding and interacted with Tyr188, Trp229, and Tyr318 residues through π-π stacking in HIV-1 RT. Interestingly, 6b was highly cytotoxic against MOLT-3 (acute lymphoblastic leukemia), HeLA (cervical carcinoma), and HL-60 (promyeloblast) cells with IC50 values of 12.7 ± 1.1, 25.7 ± 0.8, and 20.5 ± 2.1 µM, respectively. However, 6b and 6d had very low and no cytotoxicity, respectively, to-ward normal embryonic lung (MRC-5) cells. Therefore, the synthesis and biological evaluation of 2-phenylamino-4-phenoxyquinoline derivatives can serve as an excellent basis for the development of highly effective anti-HIV-1 and anticancer agents in the near future.


Asunto(s)
Transcriptasa Inversa del VIH/química , Modelos Moleculares , Quinolinas/química , Inhibidores de la Transcriptasa Inversa/química , Sitios de Unión , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Quinolinas/síntesis química , Quinolinas/farmacología , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad
3.
J Chem Inf Model ; 59(12): 5126-5134, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31714078

RESUMEN

Cytochrome P450 (CYP) enzymes are responsible for oxidative metabolisms of a large number of xenobiotics. In this study, we investigated interactions of silver nanoparticles (AgNPs) and silver ions (Ag+) with six CYP isoforms, namely, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4, within CYP-specific inhibitor-binding pockets by molecular docking and quantum mechanical (QM) calculations. The docking results revealed that the Ag3 cluster, not Ag+, interacted with key amino acids of CYP2C9, CYP2C19, and CYP2D6 within a distance of about 3 Å. Moreover, the QM analysis confirmed that the amino acid residues of these CYP enzymes strongly interacted with the Ag3 cluster, providing more insight into the mechanism of the potential inhibition of CYP enzyme activities. Interestingly, these results are consistent with previous in vitro data indicating that AgNPs inhibited activities of CYP2C and CYP2D in rat liver microsomes. It is suggested that the Ag3 cluster is a minimal unit of AgNPs for in silico modeling. In summary, we demonstrated that molecular docking, together with QM analysis, is a promising tool to predict AgNP-mediated CYP inhibition. These methods are useful for deeper understanding of reaction mechanisms and could be used for other nanomaterials.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Nanopartículas del Metal , Simulación del Acoplamiento Molecular , Plata/química , Plata/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Conformación Proteica , Plata/farmacología , Termodinámica
4.
J Nat Prod ; 81(10): 2244-2250, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30350994

RESUMEN

Biotransformation of ß-mangostin (1) by the endophytic fungus Xylaria feejeensis GM06 afforded hexacyclic ring-fused xanthenes with an unprecedented hexacyclic heterocylic skeleton. ß-Mangostin (1) was transformed to two diastereomeric pairs of enantiomers, mangostafeejin A [(-)-2a/(+)-2b)] and mangostafeejin B [(-)-3a/(+)-3b)]. The chemical structures of the transformation products were elucidated by analysis of NMR and MS data, and the structure of mangostafeejin A [(-)-2a/(+)-2b)] was confirmed by single-crystal X-ray diffraction analysis. The absolute configurations of 3a and 3b were established on the basis of calculated and measured ECD data using the ECD spectra of 2a and 2b as models. The fungal biotransformation described herein provides an effective method to convert an abundant achiral plant natural product scaffold into new chiral heterocyclic scaffolds representing expanded chemical diversity for biological activity screening.


Asunto(s)
Ácidos Heterocíclicos/síntesis química , Garcinia mangostana/microbiología , Xantenos/síntesis química , Xantonas/metabolismo , Xylariales/metabolismo , Biotransformación , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Estereoisomerismo , Difracción de Rayos X
5.
Heliyon ; 7(1): e05962, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33553730

RESUMEN

Meso-2,3-dimercaptosuccinic acid (DMSA) is one of the efficient chelating reagents for treating the toxicity of several heavy metals. Currently, nanomaterial have been applied to various parts including zinc Oxide nanoparticles (ZnONPs). ZnONPs have several properties and are used as many applications. An increasing the amount of ZnONPs in commercial products causes risks related to free radicals or reactive oxygen species (ROS) in the body, leading to oxidative stress and eventually to the cancer process. In the present work, we mainly focused on the study of DMSA complexes in term of metal ions and nanoparticles. The synthesis of DMSA-ZnONPs by the co-precipitation method were determined, followed by Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and UV-Vis spectrophotometry confirming successful synthesis process. The stability study of the DMSA complexes with metal ions and ZnONPs were determined and evaluated the stability constant (K), with the Benesi- Hildebrand equation. All complexes with DMSA were formed at a 1:2 ratio by the dithiol group and the carboxyl group with different stability constants. Therefore, these results can help of an understanding of the interaction and its behavior between DMSA with heavy metal ion and ZnONPs. In addition, the stable structure of DMSA and metal ion complexes were predicted using the B3LYP and the 6-31G (d,p) basis set which the most stable structure of meso-DMSA was 2R,3S conformation and the metal ions and DMSA complexes was complex 2a with the binding energy of -1553.46 kcal mol-1.

6.
J Photochem Photobiol B ; 212: 112027, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32977112

RESUMEN

Modification of the structure of small molecular probe which can act as photocleavage reagent has become a considerable challenge to improve the ability to target specific sites on a large protein. These photoreagents can provide valuable information on the binding site recognition and the mechanism of the photocleavage reaction under photochemical control. In this study, site specific photocleavage of lysozyme and avidin by fluorescein derivatives, fluorescein sodium salt (F-1) and 5(6)-carboxyfluorescein diacetate (F-2) were reported here for the first time. Functional groups on the photoreagent have been proven to effect on the interaction with the protein. Cleavage of the proteins by fluorescein derivatives were successful under visible region when irradiating the solution mixture of protein, fluorescein derivative and electron acceptor, cobalt (III) hexamine trichloride, at 490-492 nm. N-terminal amino acid sequencing of the cleaved fragments of lysozyme indicated the cleavage site between Trp108 - Val 109 for both probes, whereas the cleavage of avidin by F-1 and F-2 were detected between Trp70 - Lys71. Binding interaction can be investigated using methods as simple as absorption and fluorescence spectroscopies. Absorption and fluorescence studies indicated the strong binding interactions between fluorescein derivatives and the target proteins. Computational modeling was used to gain a better insight of the protein-probe binding interaction and binding sites. Molecular docking studies indicated that F-1 and F-2 were located near the hydrophilic and hydrophobic sites of both proteins within 4 Å away from the cleavage site. The docking results clarified the binding sites of F-1 and F-2 on proteins, corresponding to the results obtained from the protein photocleavage studies.


Asunto(s)
Avidina/química , Fluoresceína/química , Muramidasa/química , Fotólisis , Sitios de Unión , Transporte de Electrón
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 233: 118159, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32120287

RESUMEN

In the present investigation, the intermolecular interaction of 4-(4'-cyanophenoxy)-2-(4''-cyanophenyl)-aminoquinoline (1), a potent non-nucleoside HIV-1 reverse transcriptase inhibitors, with the transport proteins, namely bovine serum albumin (BSA) and human serum albumin (HSA), has been investigated under physiological conditions employing UV-Vis, fluorescence spectrophotometry, competitive binding experiments and molecular docking methods. The results indicated that binding of (1) to the transport proteins caused fluorescence quenching though a static quenching mechanism. The number of binding site (n) and the apparent binding constant (Kb) between (1) and the transport proteins were determined to be about 1 and 104-105 L·mol-1 (at three different temperatures; 298, 308, 318 K), respectively. The interaction of (1) upon binding to the transport proteins was spontaneous. The enthalpic change (ΔH°) and the entropic change (ΔS°) were calculated to be -56.50 kJ·mol-1, -72.31 J·mol-1 K-1 for (1)/BSA, respectively and computed to be -49.35 kJ·mol-1, -58.64 J·mol-1 K-1, respectively for (1)/HSA, respectively. The results implied that the process of interaction force of (1) with the transport protein were Vander Waals force and/or hydrogen bonding interactions. The site maker competitive experiments revealed that the binding site of (1) with the transport proteins were mainly located within site I (sub-domain IIA) in both proteins. Additionally, the molecular docking experiment supported the above results which confirmed the binding interaction between (1) and the transport proteins. This study will come up with basic data for explicating the binding mechanisms of (1) with the transport protein and can be great significance in the opening to clarify the transport process of (1) in vivo.


Asunto(s)
VIH-1 , Simulación del Acoplamiento Molecular , Inhibidores de la Transcriptasa Inversa/química , Albúmina Sérica Bovina/química , Albúmina Sérica Humana/química , Animales , Sitios de Unión , Bovinos , Humanos , Espectrofotometría Ultravioleta
8.
Drug Res (Stuttg) ; 69(12): 671-682, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31698495

RESUMEN

In this study, amino-oxy-diarylquinolines were designed using structure-guided molecular hybridization strategy and fusing of the pharmacophore templates of nevirapine (NVP), efavirenz (EFV), etravirine (ETV, TMC125) and rilpivirine (RPV, TMC278). The anti-HIV-1 reverse transcriptase (RT) activity was evaluated using standard ELISA method, and the cytotoxic activity was performed using MTT and XTT assays. The primary bioassay results indicated that 2-amino-4-oxy-diarylquinolines possess moderate inhibitory properties against HIV-1 RT. Molecular docking results showed that 2-amino-4-oxy-diarylquinolines 8(A-D): interacted with the Lys101 and His235 residue though hydrogen bonding and interacted with Tyr318 residue though π-π stacking in HIV-1 RT. Furthermore, 8A: and 8D: were the most potent anti-HIV agents among the designed and synthesized compounds, and their inhibition rates were 34.0% and 39.7% at 1 µM concentration. Interestingly, 8A: was highly cytotoxicity against MOLT-3 (acute lymphoblastic leukemia), with an IC50 of 4.63±0.62 µg/mL, which was similar with that in EFV and TMC278 (IC50 7.76±0.37 and 1.57±0.20 µg/ml, respectively). Therefore, these analogs of the synthesized compounds can serve as excellent bases for the development of new anti-HIV-1 agents in the near future.


Asunto(s)
Diarilquinolinas/química , Diarilquinolinas/farmacología , Transcriptasa Inversa del VIH/metabolismo , VIH-1/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Alquinos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Benzoxazinas/química , Benzoxazinas/farmacología , Línea Celular Tumoral , Ciclopropanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Nevirapina/química , Nevirapina/farmacología , Nitrilos , Piridazinas/química , Piridazinas/farmacología , Pirimidinas , Rilpivirina/química , Rilpivirina/farmacología
9.
Eur J Med Chem ; 143: 1301-1311, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126732

RESUMEN

In vitro screening for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the Artocarpus lakoocha root-bark extracts revealed interesting results. Bioassay-guided fractionation resulted in the isolation of two new (1 and 2) and six known 2-arylbenzofurans 3-8, along with one stilbenoid 9 and one flavonoid 10. The structures of the isolated compounds were elucidated by UV, IR, 1D- and 2D-NMR and MS spectroscopic data analysis. Compounds 4, 6 and 7 exhibited more potent AChE inhibitory activity (IC50 = 0.87-1.10 µM) than the reference drug, galantamine. Compounds 4, 8 and 9 displayed greater BChE inhibition than the standard drug. The preferential inhibition of BChE over AChE indicated that 4 also showed a promising dual AChE and BChE inhibitor. The synthetic mono-methylated analogs 4a-c and 6a-b were found to be good BChE inhibitors with IC50 values ranging between 0.31 and 1.11 µM. Based on the docking studies, compounds 4 and 6 are well-fitted in the catalytic triad of AChE. Compounds 4 and 6 showed different binding orientations on BChE, and the most potent BChE inhibitor 4 occupied dual binding to both CAS and PAS more efficiently.


Asunto(s)
Artocarpus/química , Benzofuranos/química , Benzofuranos/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Éteres Metílicos/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Benzofuranos/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica
10.
J Photochem Photobiol B ; 186: 23-30, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29990670

RESUMEN

Rational design of photoreagents with systematic modifications of their structures can provide valuable information for a better understanding of the protein photocleavage mechanism by these reagents. Variation of the length of the linker connecting the photoactive moiety with the protein anchoring-group allowed us to investigate the control of the protein photocleavage site. A series of new photochemical reagents (PMA-1A, PMA-2A and PMA-3A) with increasing chain lengths is examined in the current study. Using avidin as a model system, we examined the interaction of these probes by UV-Vis, fluorescence spectroscopic methods, photocleavage and computational docking studies. Hypochromism of the absorption spectrum was observed for the binding of these new photochemical reagents with estimated binding constants (Kb) of 6.2 × 105, 6.7 × 105 and 4.6 × 105 M-1, respectively. No significant changes of Stern-Volmer quenching constant (Ksv) with Co(NH3)6Cl3 has been noted and the data indicated that the probes bind near the surface of the protein with sufficient exposure to the solvent. Photoexcitation of the probe-avidin complex, in the presence of Co(NH3)6Cl3, resulted in protein fragmentation, and the cleavage yield decreased with the increase in the linker length, and paralleled with the observed Ksv values. Amino acid sequencing of the photofragments indicated that avidin is cleaved between Thr77 and Val78, as a major cleavage site for all the three photoreagents. This site is proximate to the biotin binding site on avidin, and molecular docking studies indicated that the H-bonding interactions between the polar end-group of the photoreagents and hydrophilic amino acids of avidin were important in positioning the reagent on the protein. The major cleavage site, at residues 77-78, was within 5 Šof the pyrenyl moiety of the probe, and hence, molecular tuning of the linker provided a simple approach to position the photoreagent along the potential photocleavage site.


Asunto(s)
Avidina/química , Pirenos/química , Secuencia de Aminoácidos , Avidina/metabolismo , Sitios de Unión , Cobalto/química , Enlace de Hidrógeno , Cinética , Luz , Simulación del Acoplamiento Molecular , Fotólisis/efectos de la radiación , Unión Proteica , Estructura Terciaria de Proteína , Pirenos/síntesis química , Pirenos/metabolismo , Espectrometría de Fluorescencia
11.
J Photochem Photobiol B ; 173: 35-42, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28554074

RESUMEN

A new photochemical reagent, succinic acid-1(1-pyrene)methylamide (PMA-SUC), was developed to recognize the specific binding sites on model proteins, egg-white lysozyme and avidin. The interaction of the photochemical reagent with the proteins was studied by UV-Vis, fluorescence spectroscopic methods and docking description. PMA-SUC was found to bind to lysozyme and avidin with binding constants (Kb) of 2.4×105 and 6.7×105 (M-1), respectively. The fluorescence intensity of PMA-SUC decreased with increasing concentration of both proteins. Quenching of PMA-SUC fluorescence, in the absence and presence of the protein by an electron acceptor (Hexaamminecobalt(III) chloride, Co(NH3)6Cl3) showed no significant changes in the Ksv values (Stern-Volmer quenching constant), indicating that PMA-SUC bound to the hydrophilic sites or near the surface of the proteins. Irradiation of protein-PMA-SUC mixture, at 342nm for a period of time, in the presence of Co(NH3)6Cl3 as an electron acceptor, resulted in the cleavage of both proteins with high specificity. Binding mechanisms were studied using Molecular docking method. Molecular docking study indicated the position of PMA-SUC upon binding to the proteins by hydrogen bonding interaction with donor-acceptor within the distance of less than 5Å in the minimum of binding free energy. The docking results have supported the results obtained from the spectroscopic methods and cleavage studies.


Asunto(s)
Avidina/metabolismo , Muramidasa/metabolismo , Pirenos/química , Succinatos/química , Animales , Avidina/química , Sitios de Unión , Pollos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Muramidasa/química , Fotólisis/efectos de la radiación , Unión Proteica , Estructura Terciaria de Proteína , Pirenos/síntesis química , Pirenos/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Succinatos/síntesis química , Succinatos/metabolismo , Rayos Ultravioleta
12.
Proteins ; 61(4): 859-69, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16245320

RESUMEN

Two-layered and three-layered ONIOM calculations were performed to compare the binding energies of 8-Cl TIBO inhibitor when bound into the human immunodeficiency virus reverse transcriptase binding pocket and a Y181C variant. Both consisted of 20 residues within a radius of 15 A. A combination of different methods [MP2/6-31G(d), B3LYP/6-31G(d,p), and PM3] were performed to take advantage of ONIOM's layering strategy analysis. The obtained results clearly indicate that the Y181C mutation reduces the binding affinity and stability of the inhibitor by approximately 8-9 kcal/mol as obtained from different combined MO:MO methods. Analyses regarding the energetic components of the interaction and deformation energies for 8-Cl TIBO inhibitor upon binding were also examined extensively. Additional calculations involving the interaction energies between 8-Cl TIBO with individual residues surrounding the binding pocket were performed at MP2/6-31G(d,p) and B3LYP/6-31G(d,p) levels of theory to gain more insight into the energetic differences of wild-type and Y181C mutant type at the atomistic level.


Asunto(s)
VIH-1/enzimología , Polimorfismo de Nucleótido Simple , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Sustitución de Aminoácidos , Dimerización , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Teoría Cuántica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Termodinámica
13.
Artículo en Inglés | MEDLINE | ID: mdl-26001102

RESUMEN

Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with metal ion, leading to the change of signals for the naked-eyes which is very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of dithizone with silver using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver-dithizone complexes was supported by UV-Vis spectroscopy, FT-IR spectrum that were simulated by using B3LYP/6-31G(d,p) and (1)H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom with minimized binding energies of silver-dithizone interaction. Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.


Asunto(s)
Ditizona/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Teoría Cuántica , Plata/química , Aniones , Dimetilsulfóxido/química , Ligandos , Soluciones , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
14.
J Chem Inf Comput Sci ; 43(5): 1584-90, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14502493

RESUMEN

To obtain basic information such as interaction between the water molecule and amino acids in the active site of HIV-1 Reverse Transcriptase (HIV-1 RT), ab initio molecular orbital calculations and the two-layer ONIOM method were performed. The energetic results from different methods show that the ONIOM2 (MP2/6-311G:HF/6-31G//HF/6-31G:HF/3-21G) can provide reliable results on the orientation of the water molecule in the HIV-1 RT active site. The interaction between the water molecule and Asp186 was found to be the most preferable. The obtained results from ONIOM2 calculations indicated that the active site model system included six amino acid residues (Asp186, Asp185, Met184, Tyr183, Leu187, and Tyr188) leading a preferable representation of the environment surrounding the water molecule in the more realistic model. The water molecule presented in the active site tends to form H-bonding with Asp186, Tyr183, and Tyr188 as indicated by the distances of O4-H2 = 1.91 A, O3-H7 = 2.36 A, and O3-H17 = 1.73 A, respectively. The stability of this complex system brings to the foundation of the estimated binding energy approximately -15.8 kcal/mol or -8.1 kcal/mol which is more stabilized relative to the smallest model complex. These observations revealed that the water molecule forms both a hydrogen bond donor and a hydrogen bond acceptor in the cavity and plays an important role in the specific conformation of the active site of HIV-1 RT. The H-bonding is a rather strong interaction; thus, the water might induce the conformation of the active site to fit the catalysis process and helpfully attract dNTP to elongate the viral DNA in the replication process of this enzyme.


Asunto(s)
Transcriptasa Inversa del VIH/química , Agua/química , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión , Transcriptasa Inversa del VIH/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Químicos , Modelos Moleculares , Conformación Proteica , Teoría Cuántica , Termodinámica , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA