Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 11(9): 8674-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164099

RESUMEN

This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH(-1) and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10(-3) °C(-1). The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm(-2) and 15.90 mW·cm(-2), with only 7.17% power loss.


Asunto(s)
Suministros de Energía Eléctrica , Humedad , Temperatura , Ondas de Radio , Telemetría/métodos
2.
Sensors (Basel) ; 10(9): 8161-72, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22163647

RESUMEN

An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Sistemas Microelectromecánicos/instrumentación , Microtecnología/instrumentación , Conductividad Eléctrica , Campos Electromagnéticos , Diseño de Equipo , Interacciones Hidrofóbicas e Hidrofílicas , Nanotecnología/instrumentación , Aceites/química , Tensoactivos/química
3.
Biosens Bioelectron ; 22(12): 3139-45, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17368015

RESUMEN

The present study describes an ultrasensitive protein biochip that employs nanogap electrodes and self-assembled nanoparticles to electrically detect protein. A bio-barcode DNA technique amplifies the concentration of target antigen at least 100-fold. This technique requires the establishment of conjugate magnetic nanoparticles (MNPs) and gold nanoparticles (AuNPs) through binding between monoclonal antibodies (2B2), the target antigen, and polyclonal antibodies (GP). Both GP and capture ssDNA (single-strand DNA) bonds to bio-barcode ssDNA are immobilized on the surface of AuNPs. A denature process releases the bio-barcode ssDNAs into the solution, and a hybridization process establishes multilayer AuNPs over the gap surface between electrodes. Electric current through double-layer self-assembled AuNPs is much greater than that through self-assembled monolayer AuNPs. This significant increase in electric current provides evidence that the solution contains the target antigen. Results show that the protein biochip attains a sensitivity of up to 1 pg/ microL.


Asunto(s)
Técnicas Biosensibles/instrumentación , Sondas de ADN , Electrodos , Nanopartículas/química , Nanotecnología , Análisis por Matrices de Proteínas/métodos , Proteínas/análisis , Antígenos Virales/análisis , Técnicas Biosensibles/métodos , Hepacivirus/inmunología , Magnetismo , Hibridación de Ácido Nucleico , Sensibilidad y Especificidad
4.
Biosens Bioelectron ; 31(1): 349-56, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22093770

RESUMEN

This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , ADN/análisis , ADN/genética , Oro/química , Nanopartículas de Magnetita/química , Análisis de Secuencia de ADN/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Nanotecnología/instrumentación , Polímeros/química , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Biotechniques ; 50(1): 52-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21231923

RESUMEN

Herein we describe a simple platform for rapid DNA amplification using convection. Capillary convective PCR (CCPCR) heats the bottom of a capillary tube using a dry bath maintained at a fixed temperature of 95°C. The tube is then cooled by the surrounding air, creating a temperature gradient in which a sample can undergo PCR amplification by natural convection through reagent circulation. We demonstrate that altering the melting temperature of the primers relative to the lowest temperature in the tube affects amplification efficiency; adjusting the denaturation temperature of the amplicon relative to the highest temperature in the tube affects maximum amplicon size, with amplicon lengths of ≤500 bp possible. Based on these criteria, we successfully amplified DNA sequences from three different viral genomes in 30 min using CCPCR, with a sensitivity of ~30 copies per reaction.


Asunto(s)
ADN/química , Reacción en Cadena de la Polimerasa/métodos , Convección , Cartilla de ADN , Genoma Viral , Calor , Sistemas de Atención de Punto/tendencias , Reacción en Cadena de la Polimerasa/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA