Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(23): 7327-32, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26015571

RESUMEN

Glycosylation, the most abundant posttranslational modification, holds an unprecedented capacity for altering biological function. Our ability to harness glycosylation as a means to control biological systems is hampered by our inability to pinpoint the specific glycans and corresponding biosynthetic enzymes underlying a biological process. Herein we identify glycosylation enzymes acting as regulatory elements within a pathway using microRNA (miRNA) as a proxy. Leveraging the target network of the miRNA-200 family (miR-200f), regulators of epithelial-to-mesenchymal transition (EMT), we pinpoint genes encoding multiple promesenchymal glycosylation enzymes (glycogenes). We focus on three enzymes, beta-1,3-glucosyltransferase (B3GLCT), beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5), and (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 (ST6GALNAC5), encoding glycans that are difficult to analyze by traditional methods. Silencing these glycogenes phenocopied the effect of miR-200f, inducing mesenchymal-to-epithelial transition. In addition, all three are up-regulated in TGF-ß-induced EMT, suggesting tight integration within the EMT-signaling network. Our work indicates that miRNA can act as a relatively simple proxy to decrypt which glycogenes, including those encoding difficult-to-analyze structures (e.g., proteoglycans, glycolipids), are functionally important in a biological pathway, setting the stage for the rapid identification of glycosylation enzymes driving disease states.


Asunto(s)
MicroARNs/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Silenciador del Gen , Glicosilación , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transferasas/genética , Transferasas/metabolismo
2.
J Biol Chem ; 291(3): 1529-37, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26589799

RESUMEN

MicroRNA regulation of protein expression plays an important role in mediating many cellular processes, from cell proliferation to cell death. The human microRNA miR-424 is up-regulated in response to anti-proliferative cytokines, such as transforming growth factor ß (TGFß), and directly represses cell cycle progression. Our laboratory recently established that microRNA can be used as a proxy to identify biological roles of glycosylation enzymes (glycogenes). Herein we identify MGAT4A, OGT, and GALNT13 as targets of miR-424. We demonstrate that MGAT4A, an N-acetylglucosaminyltransferase that installs the ß-1,4 branch of N-glycans, is directly regulated by miR-424 in multiple mammary epithelial cell lines and observe the loss of MGAT4A in response to TGFß, an inducer of miR-424. Knockdown of MGAT4A induces cell cycle arrest through decreasing CCND1 levels. MGAT4A does not affect levels of ß-1,6 branched N-glycans, arguing that this effect is specific to ß-1,4 branching and not due to gross changes in overall N-linked glycosylation. This work provides insight into the regulation of cell cycle progression by specific N-glycan branching patterns.


Asunto(s)
Glándulas Mamarias Humanas/metabolismo , MicroARNs/metabolismo , N-Acetilgalactosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Interferencia de ARN , Ciclo Celular , Línea Celular , Proliferación Celular , Ciclina D1/antagonistas & inhibidores , Ciclina D1/genética , Ciclina D1/metabolismo , Represión Enzimática , Genes Reporteros , Glicosilación , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/enzimología , MicroARNs/agonistas , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , ARN Interferente Pequeño , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(11): 4338-43, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591635

RESUMEN

Cell surface glycans form a critical interface with the biological milieu, informing diverse processes from the inflammatory cascade to cellular migration. Assembly of discrete carbohydrate structures requires the coordinated activity of a repertoire of proteins, including glycosyltransferases and glycosidases. Little is known about the regulatory networks controlling this complex biosynthetic process. Recent work points to a role for microRNA (miRNA) in the regulation of specific glycan biosynthetic enzymes. Herein we take a unique systems-based approach to identify connections between miRNA and the glycome. By using our glycomic analysis platform, lectin microarrays, we identify glycosylation signatures in the NCI-60 cell panel that point to the glycome as a direct output of genomic information flow. Integrating our glycomic dataset with miRNA data, we map miRNA regulators onto genes in glycan biosynthetic pathways (glycogenes) that generate the observed glycan structures. We validate three of these predicted miRNA/glycogene regulatory networks: high mannose, fucose, and terminal ß-GalNAc, identifying miRNA regulation that would not have been observed by traditional bioinformatic methods. Overall, our work reveals critical nodes in the global glycosylation network accessible to miRNA regulation, providing a bridge between miRNA-mediated control of cell phenotype and the glycome.


Asunto(s)
Vías Biosintéticas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , Polisacáridos/biosíntesis , Western Blotting , Línea Celular , Regulación Enzimológica de la Expresión Génica/genética , Glicómica/métodos , Glicosilación/efectos de los fármacos , Humanos , Luciferasas , MicroARNs/farmacología , Análisis por Micromatrices , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Biología de Sistemas/métodos
4.
Biochemistry ; 52(1): 132-42, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23214473

RESUMEN

The (ßα)(8)-barrel enzyme indole-3-glycerol phosphate synthase (IGPS) catalyzes the multistep transformation of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate (CdRP) into indole-3-glycerol phosphate (IGP) in tryptophan biosynthesis. Mutagenesis data and crystal structure analysis of IGPS from Sulfolobus solfataricus (sIGPS) allowed for the formulation of a plausible chemical mechanism of the reaction, and molecular dynamics simulations suggested that flexibility of active site loops might be important for catalysis. Here we developed a method that uses extrinsic fluorophores attached to active site loops to connect the kinetic mechanism of sIGPS to structure and conformational motions. Specifically, we elucidated the kinetic mechanism of sIGPS and correlated individual steps in the mechanism to conformational motions of flexible loops. Pre-steady-state kinetic measurements of CdRP to IGP conversion monitoring changes in intrinsic tryptophan and IGP fluorescence provided a minimal three-step kinetic model in which fast substrate binding and chemical transformation are followed by slow product release. The role of sIGPS loop conformational motion during substrate binding and catalysis was examined via variants that were covalently labeled with fluorescent dyes at the N-terminal extension of the enzyme and mobile active site loop ß1α1. Analysis of kinetic data monitoring dye fluorescence revealed a conformational change that follows substrate binding, suggesting an induced-fit-type binding mechanism for the substrate CdRP. Global fitting of all kinetic results obtained with wild-type sIGPS and the labeled variants was best accommodated by a four-step kinetic model. In this model, both the binding of CdRP and its on-enzyme conversion to IGP are accompanied by conformational transitions. The liberation of the product from the active site is the rate-limiting step of the overall reaction. Our results confirm the importance of flexible active loops for substrate binding and catalysis by sIGPS.


Asunto(s)
Glicerofosfatos/metabolismo , Indol-3-Glicerolfosfato Sintasa/metabolismo , Ribulosafosfatos/metabolismo , Sulfolobus solfataricus/enzimología , Dominio Catalítico , Colorantes Fluorescentes/análisis , Indol-3-Glicerolfosfato Sintasa/química , Indol-3-Glicerolfosfato Sintasa/genética , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA