Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37218457

RESUMEN

Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.


Asunto(s)
Drosophila melanogaster , Hormonas de Insectos , Animales , Femenino , Corpora Allata , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Hormonas Juveniles , Neuronas , Hormonas de Insectos/genética , Hormonas de Insectos/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Reproducción
2.
Dev Growth Differ ; 63(4-5): 249-261, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34021588

RESUMEN

The corpora allata (CA) are essential endocrine organs that biosynthesize and secrete the sesquiterpenoid hormone, namely juvenile hormone (JH), to regulate a wide variety of developmental and physiological events in insects. CA are directly innervated with neurons in many insect species, implying the innervations to be important for regulating JH biosynthesis. Although this is also true for the model organism Drosophila melanogaster, neurotransmitters produced in the CA-projecting neurons are yet to be identified. In this study on D. melanogaster, we aimed to demonstrate that a subset of neurons producing the neuropeptide hugin, the invertebrate counterpart of the vertebrate neuromedin U, directly projects to the adult CA. A synaptic vesicle marker in the hugin neurons was observed at their axon termini located on the CA, which were immunolabeled with a newly-generated antibody to the JH biosynthesis enzyme JH acid O-methyltransferase. We also found the CA-projecting hugin neurons to likely express a gene encoding the specific receptor for diuretic hormone 44 (Dh44). Moreover, our data suggest that the CA-projecting hugin neurons have synaptic connections with the upstream neurons producing Dh44. Unexpectedly, the inhibition of CA-projecting hugin neurons did not significantly alter the expression levels of the JH-inducible gene Krüppel-homolog 1, which implies that the CA-projecting neurons are not involved in JH biosynthesis but rather in other known biological processes. This is the first study to identify a specific neurotransmitter of the CA-projecting neurons in D. melanogaster, and to anatomically characterize a neuronal pathway of the CA-projecting neurons and their upstream neurons.


Asunto(s)
Corpora Allata , Drosophila melanogaster , Animales , Diuréticos , Drosophila melanogaster/genética , Hormonas Juveniles , Neuronas
3.
Sci Rep ; 14(1): 9631, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671036

RESUMEN

Intestinal stem cells (ISCs) of the fruit fly, Drosophila melanogaster, offer an excellent genetic model to explore homeostatic roles of ISCs in animal physiology. Among available genetic tools, the escargot (esg)-GAL4 driver, expressing the yeast transcription factor gene, GAL4, under control of the esg gene promoter, has contributed significantly to ISC studies. This driver facilitates activation of genes of interest in proximity to a GAL4-binding element, Upstream Activating Sequence, in ISCs and progenitor enteroblasts (EBs). While esg-GAL4 has been considered an ISC/EB-specific driver, recent studies have shown that esg-GAL4 is also active in other tissues, such as neurons and ovaries. Therefore, the ISC/EB specificity of esg-GAL4 is questionable. In this study, we reveal esg-GAL4 expression in the corpus allatum (CA), responsible for juvenile hormone (JH) production. When driving the oncogenic gene, RasV12, esg-GAL4 induces overgrowth in ISCs/EBs as reported, but also increases CA cell number and size. Consistent with this observation, animals alter expression of JH-response genes. Our data show that esg-GAL4-driven gene manipulation can systemically influence JH-mediated animal physiology, arguing for cautious use of esg-GAL4 as a "specific" ISC/EB driver to examine ISC/EB-mediated animal physiology.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Hormonas Juveniles , Células Madre , Factores de Transcripción , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hormonas Juveniles/metabolismo , Intestinos/citología , Regulación de la Expresión Génica , Animales Modificados Genéticamente
4.
bioRxiv ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562788

RESUMEN

Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insects life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analog administration, while suppression occurs upon knockdown of genes encoding the intracellular JH receptors, Methoprene-tolerant and germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on biology of the insect reproductive regulatory system.

5.
Curr Opin Insect Sci ; 31: 14-19, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31109668

RESUMEN

Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Células Germinativas/crecimiento & desarrollo , Envejecimiento , Animales , Copulación , Drosophila melanogaster/citología , Sistema Endocrino/fisiología , Femenino , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA