Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Cell Proteomics ; 23(2): 100704, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128648

RESUMEN

In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.


Asunto(s)
Células Ciliadas Auditivas Internas , Proteómica , Ratones , Animales , Células Ciliadas Auditivas Internas/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de la Membrana/metabolismo
2.
Glia ; 72(8): 1374-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38587131

RESUMEN

Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.


Asunto(s)
Axones , Glucólisis , L-Lactato Deshidrogenasa , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Axones/metabolismo , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Glucólisis/fisiología , Ratones , Regulación hacia Abajo/fisiología , Ratones Endogámicos C57BL , Lactato Deshidrogenasa 5/metabolismo , Astrocitos/metabolismo , Astrocitos/ultraestructura , Ratones Transgénicos , Isoenzimas/metabolismo , Isoenzimas/genética , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Ratones Noqueados
3.
PLoS Biol ; 18(11): e3000943, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33196637

RESUMEN

In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia. Optic nerves from Plpnull/y mice exhibited lower and more variable basal axonal ATP levels and reduced compound action potential (CAP) amplitudes, providing a missing link between axonal pathology and a role of oligodendrocytes in brain energy metabolism. Surprisingly, when Plpnull/y optic nerves are challenged with transient glucose deprivation, both ATP levels and CAP decline slower, but recover faster upon reperfusion of glucose. Structurally, myelin sheaths display an increased frequency of cytosolic channels comprising glucose and monocarboxylate transporters, possibly facilitating accessibility of energy substrates to the axon. These data imply that complex metabolic alterations of the axon-myelin unit contribute to the phenotype of Plpnull/y mice.


Asunto(s)
Adenosina Trifosfato/metabolismo , Vaina de Mielina/metabolismo , Paraplejía/metabolismo , Potenciales de Acción , Animales , Axones/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Proteína Proteolipídica de la Mielina/deficiencia , Proteína Proteolipídica de la Mielina/genética , Vaina de Mielina/patología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Paraplejía/genética , Paraplejía/patología , Fenotipo
4.
Glia ; 67(4): 634-649, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30637801

RESUMEN

Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/citología , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Animales , Axones/ultraestructura , Citocinas/genética , Citocinas/metabolismo , Antagonistas de Estrógenos/farmacología , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Inmunohistoquímica , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteínas de la Mielina/ultraestructura , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/ultraestructura , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/ultraestructura , ARN Mensajero/metabolismo , Tamoxifeno/farmacología
6.
Acta Neuropathol ; 138(1): 147-161, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30919030

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is an untreatable and fatal leukodystrophy. In a model of PMD with perturbed blood-brain barrier integrity, cholesterol supplementation promotes myelin membrane growth. Here, we show that in contrast to the mouse model, dietary cholesterol in two PMD patients did not lead to a major advancement of hypomyelination, potentially because the intact blood-brain barrier precludes its entry into the CNS. We therefore turned to a PMD mouse model with preserved blood-brain barrier integrity and show that a high-fat/low-carbohydrate ketogenic diet restored oligodendrocyte integrity and increased CNS myelination. This dietary intervention also ameliorated axonal degeneration and normalized motor functions. Moreover, in a paradigm of adult remyelination, ketogenic diet facilitated repair and attenuated axon damage. We suggest that a therapy with lipids such as ketone bodies, that readily enter the brain, can circumvent the requirement of a disrupted blood-brain barrier in the treatment of myelin disease.


Asunto(s)
Enfermedades Desmielinizantes/patología , Proteína Proteolipídica de la Mielina/metabolismo , Oligodendroglía/fisiología , Enfermedad de Pelizaeus-Merzbacher/patología , Animales , Dieta Cetogénica , Modelos Animales de Enfermedad , Ratones , Oligodendroglía/metabolismo , Organogénesis/fisiología
7.
Glia ; 64(1): 155-74, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26393339

RESUMEN

Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine-Sottas syndrome (DSS) and in the corresponding mouse model (P0(null)-mice). In the mammalian CNS, the tetraspan-membrane protein PLP is the major structural myelin constituent and required for the long-term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type-2) and the relevant mouse model (Plp(null)-mice). The Plp-gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0(null)-mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0(null)*Plp(null)-double-mutant mice. Compared with either single-mutant, P0(null)*Plp(null)-mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non-myelinated but in a one-to-one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0(null)*Plp(null)-mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell-dependent support of peripheral axons and the oligodendrocyte-dependent support of central axons.


Asunto(s)
Axones/metabolismo , Proteína P0 de la Mielina/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Nervio Frénico/metabolismo , Nervio Ciático/metabolismo , Animales , Axones/patología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Estimación de Kaplan-Meier , Ratones Endogámicos C57BL , Ratones Noqueados , Mortalidad Prematura , Actividad Motora/fisiología , Proteína P0 de la Mielina/genética , Proteína Proteolipídica de la Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Glicoproteína Asociada a Mielina/metabolismo , Conducción Nerviosa/fisiología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Frénico/patología , Nervio Ciático/patología
8.
Leukemia ; 38(5): 1086-1098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600314

RESUMEN

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


Asunto(s)
Metilación de ADN , Células Dendríticas , Humanos , Células Dendríticas/patología , Células Dendríticas/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Microambiente Tumoral/genética , Anciano , Adulto , Pronóstico , Regulación Neoplásica de la Expresión Génica , Mutación , Biomarcadores de Tumor/genética
9.
Glia ; 61(11): 1832-47, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24038504

RESUMEN

Deficiency of the major constituent of central nervous system (CNS) myelin, proteolipid protein (PLP), causes axonal pathology in spastic paraplegia type-2 patients and in Plp1(null) -mice but is compatible with almost normal myelination. These observations led us to speculate that PLP's role in myelination may be partly compensated for by other tetraspan proteins. Here, we demonstrate that the abundance of the structurally related tetraspanin-2 (TSPAN2) is highly increased in CNS myelin of Plp1(null) -mice. Unexpectedly, Tspan2(null) -mutant mice generated by homologous recombination in embryonic stem cells displayed low-grade activation of astrocytes and microglia in white matter tracts while they were fully myelinated and showed no signs of axonal degeneration. To determine overlapping functions of TSPAN2 and PLP, Tspan2(null) *Plp1(null) double-mutant mice were generated. Strikingly, the activation of astrocytes and microglia was strongly enhanced in Tspan2(null) *Plp1(null) double-mutants compared with either single-mutant, but the levels of dysmyelination and axonal degeneration were not increased. In this model, glial activation is thus unlikely to be caused by axonal pathology, and vice versa does not potentiate axonal degeneration. Our results support the concept that multiple myelin proteins have distinct roles in the long-term preservation of a healthy CNS, rather than in myelination per se.


Asunto(s)
Axones/metabolismo , Microglía/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tetraspaninas/metabolismo , Animales , Axones/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fibras Nerviosas Mielínicas/patología , Proteínas del Tejido Nervioso/deficiencia , Tetraspaninas/deficiencia
10.
Mol Ther Methods Clin Dev ; 29: 202-212, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37081855

RESUMEN

Sensory restoration by optogenetic neurostimulation provides a promising future alternative to current electrical stimulation approaches. So far, channelrhodopsins (ChRs) typically contain a C-terminal fluorescent protein (FP) tag for visualization that potentially poses an additional risk for clinical translation. Previous work indicated a reduction of optogenetic stimulation efficacy upon FP removal. Here, we further optimized the fast-gating, red-light-activated ChR f-Chrimson to achieve efficient optogenetic stimulation in the absence of the C-terminal FP. Upon FP removal, we observed a massive amplitude reduction of photocurrents in transfected cells in vitro and of optogenetically evoked activity of the adeno-associated virus (AAV) vector-transduced auditory nerve in mice in vivo. Increasing the AAV vector dose restored optogenetically evoked auditory nerve activity but was confounded by neural loss. Of various C-terminal modifications, we found the replacement of the FP by the Kir2.1 trafficking sequence (TSKir2.1) to best restore both photocurrents and optogenetically evoked auditory nerve activity with only mild neural loss few months after dosing. In conclusion, we consider f-Chrimson-TSKir2.1 to be a promising candidate for clinical translation of optogenetic neurostimulation such as by future optical cochlear implants.

11.
Cell Death Dis ; 14(9): 641, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770435

RESUMEN

Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo
12.
Life Sci Alliance ; 5(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35512833

RESUMEN

AAV-mediated optogenetic neural stimulation has become a clinical approach for restoring function in sensory disorders and feasibility for hearing restoration has been indicated in rodents. Nonetheless, long-term stability and safety of AAV-mediated channelrhodopsin (ChR) expression in spiral ganglion neurons (SGNs) remained to be addressed. Here, we used longitudinal studies on mice subjected to early postnatal administration of AAV2/6 carrying fast gating ChR f-Chrimson under the control of the human synapsin promoter unilaterally to the cochlea. f-Chrimson expression in SGNs in both ears and the brain was probed in animals aged 1 mo to 2 yr. f-Chrimson was observed in SGNs at all ages indicating longevity of ChR-expression. SGN numbers in the AAV-injected cochleae declined with age faster than in controls. Investigations were extended to the brain in which viral transduction was observed across the organ at varying degrees irrespective of age without observing viral spread-related pathologies. No viral DNA or virus-related histopathological findings in visceral organs were encountered. In summary, our study demonstrates life-long (24 mo in mice) expression of f-Chrimson in SGNs upon single AAV-dosing of the cochlea.


Asunto(s)
Optogenética , Ganglio Espiral de la Cóclea , Animales , Encéfalo , Audición/genética , Ratones , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/metabolismo
13.
EMBO Mol Med ; 14(8): e15798, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35833443

RESUMEN

Hearing impairment, the most prevalent sensory deficit, affects more than 466 million people worldwide (WHO). We presently lack causative treatment for the most common form, sensorineural hearing impairment; hearing aids and cochlear implants (CI) remain the only means of hearing restoration. We engaged with CI users to learn about their expectations and their willingness to collaborate with health care professionals on establishing novel therapies. We summarize upcoming CI innovations, gene therapies, and regenerative approaches and evaluate the chances for clinical translation of these novel strategies. We conclude that there remains an unmet medical need for improving hearing restoration and that we are likely to witness the clinical translation of gene therapy and major CI innovations within this decade.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Audífonos , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Audición , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/terapia , Humanos
14.
Nat Commun ; 13(1): 1163, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246535

RESUMEN

Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes.


Asunto(s)
Vaina de Mielina , Sustancia Blanca , Animales , Axones/metabolismo , Ratones , Vaina de Mielina/metabolismo , Oligodendroglía
15.
Proteomics ; 11(17): 3518-30, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21751354

RESUMEN

Plasma medicine and also decontamination of bacteria with physical plasmas is a promising new field of life science with huge interest especially for medical applications. Despite numerous successful applications of low temperature gas plasmas in medicine and decontamination, the fundamental nature of the interactions between plasma and microorganisms is to a large extent unknown. A detailed knowledge of these interactions is essential for the development of new as well as for the enhancement of established plasma-treatment procedures. In the present work we introduce for the first time a growth chamber system suitable for low temperature gas plasma treatment of bacteria in liquid medium. We have coupled the use of this apparatus to a combined proteomic and transcriptomic analyses to investigate the specific stress response of Bacillus subtilis 168 cells to treatment with argon plasma. The treatment with three different discharge voltages revealed not only effects on growth, but also clear evidence of cellular stress responses. B. subtilis suffered severe cell wall stress, which was made visible also by electron microscopy, DNA damages and oxidative stress as a result of exposure to plasma. These biological findings were supported by the detection of reactive plasma species by OES measurements.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Descontaminación/instrumentación , Gases em Plasma/metabolismo , Bacillus subtilis/citología , Frío , Descontaminación/métodos , Diseño de Equipo , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Int J Med Microbiol ; 301(6): 488-99, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21470910

RESUMEN

Staphylococcus aureus is a major human pathogen. Superantigens (SAg) are important virulence factors in S. aureus, but the regulation of SAg gene expression is largely unknown. Using 2 sequenced S. aureus strains (COL and Newman) and 4 clinical isolates, regulation of gene expression was investigated in more detail for 12 SAgs. The SAg-encoding genes were expressed in a growth phase-dependent manner: while the egc operon was mainly transcribed at low optical densities, the transcription of seb was induced at high optical densities. The transcript levels of sea, sek, seq, sep, and tst-1 did not change significantly during growth. The T cell-mitogenic activity of supernatants correlated with the transcription data. SaeRS and σ(B) strongly influenced SAg gene transcription. σ(B) activated transcription of seh, tst-1, and of the egc operon. A possible σ(B)-dependent promoter was identified in front of the egc operon. In contrast, a loss of σ(B) enhanced the transcript level of seb, suggesting an indirect effect of the alternative sigma factor on the transcription of this gene. Transcriptional studies of an saeS mutant showed that the two-component system only activates transcription of seb. The influence of σ(B) and SaeRS on the expression of SAg genes was validated by T cell proliferation assays. For sigB mutants in different strains, different effects on the T cell-mitogenic potential were observed depending on the SAg gene repertoire of the isolates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterotoxinas/genética , Factor sigma/metabolismo , Staphylococcus aureus/genética , Superantígenos/metabolismo , Proteínas Bacterianas/genética , Proliferación Celular , Células Cultivadas , Enterotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Humanos , Mutación , Operón , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Proteínas Quinasas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Factor sigma/genética , Staphylococcus aureus/clasificación , Staphylococcus aureus/aislamiento & purificación , Superantígenos/genética , Factores de Transcripción , Transcripción Genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Front Cell Neurosci ; 14: 239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973451

RESUMEN

Myelin membranes are dominated by lipids while the complexity of their protein composition has long been considered to be low. However, numerous additional myelin proteins have been identified since. Here we revisit the proteome of myelin biochemically purified from the brains of healthy c56Bl/6N-mice utilizing complementary proteomic approaches for deep qualitative and quantitative coverage. By gel-free, label-free mass spectrometry, the most abundant myelin proteins PLP, MBP, CNP, and MOG constitute 38, 30, 5, and 1% of the total myelin protein, respectively. The relative abundance of myelin proteins displays a dynamic range of over four orders of magnitude, implying that PLP and MBP have overshadowed less abundant myelin constituents in initial gel-based approaches. By comparisons with published datasets we evaluate to which degree the CNS myelin proteome correlates with the mRNA and protein abundance profiles of myelin and oligodendrocytes. Notably, the myelin proteome displays only minor changes if assessed after a post-mortem delay of 6 h. These data provide the most comprehensive proteome resource of CNS myelin so far and a basis for addressing proteomic heterogeneity of myelin in mouse models and human patients with white matter disorders.

18.
Front Mol Neurosci ; 13: 600051, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488357

RESUMEN

Hearing impairment is the most common sensory disorder in humans. So far, rehabilitation of profoundly deaf subjects relies on direct stimulation of the auditory nerve through cochlear implants. However, in some forms of genetic hearing impairment, the organ of Corti is structurally intact and therapeutic replacement of the mutated gene could potentially restore near natural hearing. In the case of defects of the otoferlin gene (OTOF), such gene therapy is hindered by the size of the coding sequence (~6 kb) exceeding the cargo capacity (<5 kb) of the preferred viral vector, adeno-associated virus (AAV). Recently, a dual-AAV approach was used to partially restore hearing in deaf otoferlin knock-out (Otof-KO) mice. Here, we employed in vitro and in vivo approaches to assess the gene-therapeutic potential of naturally-occurring and newly-developed synthetic AAVs overloaded with the full-length Otof coding sequence. Upon early postnatal injection into the cochlea of Otof-KO mice, overloaded AAVs drove specific expression of otoferlin in ~30% of all IHCs, as demonstrated by immunofluorescence labeling and polymerase chain reaction. Recordings of auditory brainstem responses and a behavioral assay demonstrated partial restoration of hearing. Together, our results suggest that viral gene therapy of DFNB9-using a single overloaded AAV vector-is indeed feasible, reducing the complexity of gene transfer compared to dual-AAV approaches.

19.
Nat Commun ; 11(1): 5497, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127910

RESUMEN

Myelinating oligodendrocytes enable fast propagation of action potentials along the ensheathed axons. In addition, oligodendrocytes play diverse non-canonical roles including axonal metabolic support and activity-dependent myelination. An open question remains whether myelination also contributes to information processing in addition to speeding up conduction velocity. Here, we analyze the role of myelin in auditory information processing using paradigms that are also good predictors of speech understanding in humans. We compare mice with different degrees of dysmyelination using acute multiunit recordings in the auditory cortex, in combination with behavioral readouts. We find complex alterations of neuronal responses that reflect fatigue and temporal acuity deficits. We observe partially discriminable but similar deficits in well myelinated mice in which glial cells cannot fully support axons metabolically. We suggest a model in which myelination contributes to sustained stimulus perception in temporally complex paradigms, with a role of metabolically active oligodendrocytes in cortical information processing.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Potenciales de Acción/fisiología , Animales , Corteza Auditiva/patología , Conducta Animal , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuroglía , Neuronas/metabolismo
20.
Nat Commun ; 11(1): 4514, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908139

RESUMEN

The velocity of nerve conduction is moderately enhanced by larger axonal diameters and potently sped up by myelination of axons. Myelination thus allows rapid impulse propagation with reduced axonal diameters; however, no myelin-dependent mechanism has been reported that restricts radial growth of axons. By label-free proteomics, STED-microscopy and cryo-immuno electron-microscopy we here identify CMTM6 (chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6) as a myelin protein specifically localized to the Schwann cell membrane exposed to the axon. We find that disruption of Cmtm6-expression in Schwann cells causes a substantial increase of axonal diameters but does not impair myelin biogenesis, radial sorting or integrity of axons. Increased axonal diameters correlate with accelerated sensory nerve conduction and sensory responses and perturbed motor performance. These data show that Schwann cells utilize CMTM6 to restrict the radial growth of axons, which optimizes nerve function.


Asunto(s)
Axones/metabolismo , Proteínas con Dominio MARVEL/metabolismo , Proteínas de la Mielina/metabolismo , Nervios Periféricos/citología , Células de Schwann/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axones/ultraestructura , Microscopía por Crioelectrón , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Conducción Nerviosa , Nervios Periféricos/metabolismo , Nervios Periféricos/ultraestructura , Proteómica , Células de Schwann/citología , Células de Schwann/ultraestructura , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA