Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37342957

RESUMEN

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Asunto(s)
Actinas , Anemia , Factores de Intercambio de Guanina Nucleótido , Inflamación , Animales , Humanos , Ratones , Actinas/genética , Actinas/metabolismo , Anemia/etiología , Anemia/genética , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Hematopoyesis , Inflamación/etiología , Inflamación/genética , Pez Cebra/genética , Pez Cebra/metabolismo
2.
J Med Genet ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38876772

RESUMEN

Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.

3.
Am J Hum Genet ; 108(6): 1126-1137, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34010604

RESUMEN

Dysregulated transforming growth factor TGF-ß signaling underlies the pathogenesis of genetic disorders affecting the connective tissue such as Loeys-Dietz syndrome. Here, we report 12 individuals with bi-allelic loss-of-function variants in IPO8 who presented with a syndromic association characterized by cardio-vascular anomalies, joint hyperlaxity, and various degree of dysmorphic features and developmental delay as well as immune dysregulation; the individuals were from nine unrelated families. Importin 8 belongs to the karyopherin family of nuclear transport receptors and was previously shown to mediate TGF-ß-dependent SMADs trafficking to the nucleus in vitro. The important in vivo role of IPO8 in pSMAD nuclear translocation was demonstrated by CRISPR/Cas9-mediated inactivation in zebrafish. Consistent with IPO8's role in BMP/TGF-ß signaling, ipo8-/- zebrafish presented mild to severe dorso-ventral patterning defects during early embryonic development. Moreover, ipo8-/- zebrafish displayed severe cardiovascular and skeletal defects that mirrored the human phenotype. Our work thus provides evidence that IPO8 plays a critical and non-redundant role in TGF-ß signaling during development and reinforces the existing link between TGF-ß signaling and connective tissue defects.


Asunto(s)
Enfermedades Óseas/etiología , Enfermedades Cardiovasculares/etiología , Enfermedades del Tejido Conjuntivo/etiología , Inmunidad Celular/inmunología , Mutación con Pérdida de Función , Pérdida de Heterocigocidad , beta Carioferinas/genética , Adolescente , Adulto , Animales , Enfermedades Óseas/patología , Enfermedades Cardiovasculares/patología , Niño , Enfermedades del Tejido Conjuntivo/patología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Adulto Joven , Pez Cebra , beta Carioferinas/metabolismo
4.
Clin Genet ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801004

RESUMEN

Biallelic variants in PISD cause a phenotypic spectrum ranging from short stature with spondyloepimetaphyseal dysplasia (SEMD) to a multisystem disorder affecting eyes, ears, bones, and brain. PISD encodes the mitochondrial-localized enzyme phosphatidylserine decarboxylase. The PISD precursor is self-cleaved to generate a heteromeric mature enzyme that converts phosphatidylserine to the phospholipid phosphatidylethanolamine. We describe a 17-year-old male patient, born to unrelated healthy parents, with disproportionate short stature and SEMD, featuring platyspondyly, prominent epiphyses, and metaphyseal dysplasia. Trio genome sequencing revealed compound heterozygous PISD variants c.569C>T; p.(Ser190Leu) and c.799C>T; p.(His267Tyr) in the patient. Investigation of fibroblasts showed similar levels of the PISD precursor protein in both patient and control cells. However, patient cells had a significantly higher proportion of fragmented mitochondria compared to control cells cultured under basal condition and after treatment with 2-deoxyglucose that represses glycolysis and stimulates respiration. Structural data from the PISD orthologue in Escherichia coli suggest that the amino acid substitutions Ser190Leu and His267Tyr likely impair PISD's autoprocessing activity and/or phosphatidylethanolamine biosynthesis. Based on the data, we propose that the novel PISD p.(Ser190Leu) and p.(His267Tyr) variants likely act as hypomorphs and underlie the pure skeletal phenotype in the patient.

5.
Neurogenetics ; 24(3): 171-180, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37039969

RESUMEN

DNM1 developmental and epileptic encephalopathy (DEE) is characterized by severe to profound intellectual disability, hypotonia, movement disorder, and refractory epilepsy, typically presenting with infantile spasms. Most of the affected individuals had de novo missense variants in DNM1. DNM1 undergoes alternative splicing that results in expression of six different transcript variants. One alternatively spliced region affects the tandemly arranged exons 10a and 10b, producing isoforms DNM1A and DNM1B, respectively. Pathogenic variants in the DNM1 coding region affect all transcript variants. Recently, a de novo DNM1 NM_001288739.1:c.1197-8G > A variant located in intron 9 has been reported in several unrelated individuals with DEE that causes in-frame insertion of two amino acids and leads to disease through a dominant-negative mechanism. We report on a patient with DEE and a de novo DNM1 variant NM_001288739.2:c.1197-46C > G in intron 9, upstream of exon 10a. By RT-PCR and Sanger sequencing using fibroblast-derived cDNA of the patient, we identified aberrantly spliced DNM1 mRNAs with exon 9 spliced to the last 45 nucleotides of intron 9 followed by exon 10a (NM_001288739.2:r.1196_1197ins[1197-1_1197-45]). The encoded DNM1A mutant is predicted to contain 15 novel amino acids between Ile398 and Arg399 [NP_001275668.1:p.(Ile398_Arg399ins15)] and likely functions in a dominant-negative manner, similar to other DNM1 mutants. Our data confirm the importance of the DNM1 isoform A for normal human brain function that is underscored by previously reported predominant expression of DMN1A transcripts in pediatric brain, functional differences of the mouse Dnm1a and Dnm1b isoforms, and the Dnm1 fitful mouse, an epilepsy mouse model.


Asunto(s)
Sitios de Empalme de ARN , Espasmos Infantiles , Animales , Niño , Humanos , Ratones , Exones/genética , Mutación , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/genética , Espasmos Infantiles/genética
6.
Neurogenetics ; 24(2): 79-93, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653678

RESUMEN

Type I inositol polyphosphate-4-phosphatase (INPP4A) belongs to the group of phosphoinositide phosphatases controlling proliferation, apoptosis, and endosome function by hydrolyzing phosphatidylinositol 3,4-bisphosphate. INPP4A produces multiple transcripts encoding shorter and longer INPP4A isoforms with hydrophilic or hydrophobic C-terminus. Biallelic INPP4A truncating variants cause a spectrum of neurodevelopmental disorders ranging from moderate intellectual disability to postnatal microcephaly with developmental and epileptic encephalopathy and (ponto)cerebellar hypoplasia. We report a girl with the novel homozygous INPP4A variant NM_001134224.2:c.2840del/p.(Gly947Glufs*12) (isoform d). She presented with postnatal microcephaly, global developmental delay, visual impairment, myoclonic seizures, and pontocerebellar hypoplasia and died at the age of 27 months. The level of mutant INPP4A mRNAs in proband-derived leukocytes was comparable to controls suggesting production of C-terminally altered INPP4A isoforms. We transiently expressed eGFP-tagged INPP4A isoform a (NM_004027.3) wildtype and p.(Gly908Glufs*12) mutant [p.(Gly947Glufs*12) according to NM_001134224.2] as well as INPP4A isoform b (NM_001566.2) wildtype and p.(Asp915Alafs*2) mutant, previously reported in family members with moderate intellectual disability, in HeLa cells and determined their subcellular distributions. While INPP4A isoform a was preferentially found in perinuclear clusters co-localizing with the GTPase Rab5, isoform b showed a net-like distribution, possibly localizing near and/or on microtubules. Quantification of intracellular localization patterns of the two INPP4A mutants revealed significant differences compared with the respective wildtype and similarity with each other. Our data suggests an important non-redundant function of INPP4A isoforms with hydrophobic or hydrophilic C-terminus in the brain.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Preescolar , Femenino , Humanos , Cerebelo , Células HeLa , Discapacidad Intelectual/genética , Microcefalia/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
7.
Am J Hum Genet ; 107(6): 1044-1061, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159882

RESUMEN

Heparan sulfate belongs to the group of glycosaminoglycans (GAGs), highly sulfated linear polysaccharides. Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) is one of several specialized enzymes required for heparan sulfate synthesis and catalyzes the transfer of the sulfate groups to the sugar moiety of heparan sulfate. We report bi-allelic pathogenic variants in HS2ST1 in four individuals from three unrelated families. Affected individuals showed facial dysmorphism with coarse face, upslanted palpebral fissures, broad nasal tip, and wide mouth, developmental delay and/or intellectual disability, corpus callosum agenesis or hypoplasia, flexion contractures, brachydactyly of hands and feet with broad fingertips and toes, and uni- or bilateral renal agenesis in three individuals. HS2ST1 variants cause a reduction in HS2ST1 mRNA and decreased or absent heparan sulfate 2-O-sulfotransferase 1 in two of three fibroblast cell lines derived from affected individuals. The heparan sulfate synthesized by the individual 1 cell line lacks 2-O-sulfated domains but had an increase in N- and 6-O-sulfated domains demonstrating functional impairment of the HS2ST1. As heparan sulfate modulates FGF-mediated signaling, we found a significantly decreased activation of the MAP kinases ERK1/2 in FGF-2-stimulated cell lines of affected individuals that could be restored by addition of heparin, a GAG similar to heparan sulfate. Focal adhesions in FGF-2-stimulated fibroblasts of affected individuals concentrated at the cell periphery. Our data demonstrate that a heparan sulfate synthesis deficit causes a recognizable syndrome and emphasize a role for 2-O-sulfated heparan sulfate in human neuronal, skeletal, and renal development.


Asunto(s)
Huesos/anomalías , Cuerpo Calloso/patología , Discapacidades del Desarrollo/genética , Riñón/anomalías , Sulfotransferasas/genética , Adolescente , Alelos , Biopsia , Niño , Preescolar , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Variación Genética , Heparitina Sulfato/metabolismo , Humanos , Ácido Idurónico/farmacología , Recién Nacido , Masculino , Linaje , Fenotipo , Síndrome , Anomalías Urogenitales/genética
8.
Am J Hum Genet ; 107(6): 1062-1077, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217309

RESUMEN

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.


Asunto(s)
Canales de Cloruro/genética , Mutación con Ganancia de Función , Enfermedades Neurodegenerativas/genética , Alelos , Animales , Células CHO , Niño , Cricetulus , Electrofisiología , Endosomas/metabolismo , Femenino , Células HeLa , Heterocigoto , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Lactante , Transporte Iónico , Iones , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Macrólidos/farmacología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Microscopía por Video , Transfección
9.
Am J Hum Genet ; 107(1): 34-45, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32497488

RESUMEN

IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.


Asunto(s)
Artrogriposis/genética , Mutación/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Regulación de la Expresión Génica/genética , Humanos , Queratosis/genética , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Adulto Joven
10.
Genet Med ; 25(10): 100927, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422718

RESUMEN

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Asunto(s)
Anomalías Craneofaciales , Hipospadias , Masculino , Humanos , Hipospadias/genética , Factores de Empalme de ARN/genética , Empalme del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transactivadores/genética , Proteínas de Unión al ARN/genética
11.
Brain ; 145(8): 2721-2729, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35293990

RESUMEN

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Asunto(s)
Canales de Calcio Tipo N , Epilepsia , Edad de Inicio , Animales , Calcio , Canales de Calcio , Canales de Calcio Tipo L , Membrana Celular , Humanos , Mamíferos , Neuronas
12.
Brain ; 145(4): 1551-1563, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34694367

RESUMEN

The major spliceosome mediates pre-mRNA splicing by recognizing the highly conserved sequences at the 5' and 3' splice sites and the branch point. More than 150 proteins participate in the splicing process and are organized in the spliceosomal A, B, and C complexes. FRA10AC1 is a peripheral protein of the spliceosomal C complex and its ortholog in the green alga facilitates recognition or interaction with splice sites. We identified biallelic pathogenic variants in FRA10AC1 in five individuals from three consanguineous families. The two unrelated Patients 1 and 2 with loss-of-function variants showed developmental delay, intellectual disability, and no speech, while three siblings with the c.494_496delAAG (p.Glu165del) variant had borderline to mild intellectual disability. All patients had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism. FRA10AC1 transcripts and proteins were drastically reduced or absent in fibroblasts of Patients 1 and 2. In a heterologous expression system, the p.Glu165del variant impacts intrinsic stability of FRA10AC1 but does not affect its nuclear localization. By co-immunoprecipitation, we found ectopically expressed HA-FRA10AC1 in complex with endogenous DGCR14, another component of the spliceosomal C complex, while the splice factors CHERP, NKAP, RED, and SF3B2 could not be co-immunoprecipitated. Using an in vitro splicing reporter assay, we did not obtain evidence for FRA10AC1 deficiency to suppress missplicing events caused by mutations in the highly conserved dinucleotides of 5' and 3' splice sites in an in vitro splicing assay in patient-derived fibroblasts. Our data highlight the importance of specific peripheral spliceosomal C complex proteins for neurodevelopment. It remains possible that FRA10AC1 may have other and/or additional cellular functions, such as coupling of transcription and splicing reactions.


Asunto(s)
Trastornos del Crecimiento , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Proteínas Nucleares , Proteínas de Unión al ADN/genética , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
13.
PLoS Genet ; 16(3): e1008625, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176688

RESUMEN

P/Q-type channels are the principal presynaptic calcium channels in brain functioning in neurotransmitter release. They are composed of the pore-forming CaV2.1 α1 subunit and the auxiliary α2δ-2 and ß4 subunits. ß4 is encoded by CACNB4, and its multiple splice variants serve isoform-specific functions as channel subunits and transcriptional regulators in the nucleus. In two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy we identified rare homozygous variants in the genes LTBP1, EMILIN1, CACNB4, MINAR1, DHX38 and MYO15 by whole-exome sequencing. In silico tools, animal model, clinical, and genetic data suggest the p.(Leu126Pro) CACNB4 variant to be likely pathogenic. To investigate the functional consequences of the CACNB4 variant, we introduced the corresponding mutation L125P into rat ß4b cDNA. Heterologously expressed wild-type ß4b associated with GFP-CaV1.2 and accumulated in presynaptic boutons of cultured hippocampal neurons. In contrast, the ß4b-L125P mutant failed to incorporate into calcium channel complexes and to cluster presynaptically. When co-expressed with CaV2.1 in tsA201 cells, ß4b and ß4b-L125P augmented the calcium current amplitudes, however, ß4b-L125P failed to stably complex with α1 subunits. These results indicate that p.Leu125Pro disrupts the stable association of ß4b with native calcium channel complexes, whereas membrane incorporation, modulation of current density and activation properties of heterologously expressed channels remained intact. Wildtype ß4b was specifically targeted to the nuclei of quiescent excitatory cells. Importantly, the p.Leu125Pro mutation abolished nuclear targeting of ß4b in cultured myotubes and hippocampal neurons. While binding of ß4b to the known interaction partner PPP2R5D (B56δ) was not affected by the mutation, complex formation between ß4b-L125P and the neuronal TRAF2 and NCK interacting kinase (TNIK) seemed to be disturbed. In summary, our data suggest that the homozygous CACNB4 p.(Leu126Pro) variant underlies the severe neurological phenotype in the two siblings, most likely by impairing both channel and non-channel functions of ß4b.


Asunto(s)
Canales de Calcio/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Subunidades de Proteína/genética , Animales , Calcio/metabolismo , Canales de Calcio Tipo N/genética , Células Cultivadas , Femenino , Regulación de la Expresión Génica/genética , Células HEK293 , Hipocampo/fisiología , Homocigoto , Humanos , Masculino , Ratones Endogámicos BALB C , Neuronas/metabolismo , Terminales Presinápticos/fisiología , Isoformas de Proteínas/genética , Ratas , Transmisión Sináptica/genética
14.
Hum Mutat ; 43(9): 1224-1233, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35510366

RESUMEN

Nemaline myopathies (NEMs) are genetically and clinically heterogenous. Biallelic or monoallelic variants in TNNT1, encoding slow skeletal troponin T1 (TnT1), cause NEM. We report a 2-year-old patient and his mother carrying the heterozygous TNNT1 variant c.194A>C/p.(Asp65Ala) that occurred de novo in the mother. Both had muscle hypotrophy and muscle weakness. Muscle pathology in the proband's mother revealed slow twitch type 1 fiber hypotrophy and fast twitch type 2 fiber hypertrophy that was confirmed by a reduced ratio of slow skeletal myosin to fast skeletal myosin type 2a. Reverse transcription polymerase chain reaction and immunoblotting data demonstrated increased levels of high-molecular-weight TnT1 isoforms in skeletal muscle of the proband's mother that were also observed in some controls. In an overexpression system, complex formation of TnT1-D65A with tropomyosin 3 (TPM3) was enhanced. The previously reported TnT1-E104V and TnT1-L96P mutants showed reduced or no co-immunoprecipitation with TPM3. Our studies support pathogenicity of the TNNT1 p.(Asp65Ala) variant.


Asunto(s)
Miopatías Nemalínicas , Preescolar , Humanos , Músculo Esquelético/patología , Mutación , Miopatías Nemalínicas/patología , Isoformas de Proteínas/genética , Troponina T/genética
15.
Hum Mutat ; 43(5): 625-642, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35266227

RESUMEN

BNIP1 (BCL2 interacting protein 1) is a soluble N-ethylmaleimide-sensitive factor-attachment protein receptor involved in ER membrane fusion. We identified the homozygous BNIP1 intronic variant c.84+3A>T in the apparently unrelated patients 1 and 2 with disproportionate short stature. Radiographs showed abnormalities affecting both the axial and appendicular skeleton and spondylo-epiphyseal dysplasia. We detected ~80% aberrantly spliced BNIP1 pre-mRNAs, reduced BNIP1 mRNA level to ~80%, and BNIP1 protein level reduction by ~50% in patient 1 compared to control fibroblasts. The BNIP1 ortholog in Drosophila, Sec20, regulates autophagy and lysosomal degradation. We assessed lysosome positioning and identified a decrease in lysosomes in the perinuclear region and an increase in the cell periphery in patient 1 cells. Immunofluorescence microscopy and immunoblotting demonstrated an increase in LC3B-positive structures and LC3B-II levels, respectively, in patient 1 fibroblasts under steady-state condition. Treatment of serum-starved fibroblasts with or without bafilomycin A1 identified significantly decreased autophagic flux in patient 1 cells. Our data suggest a block at the terminal stage of autolysosome formation and/or clearance in patient fibroblasts. BNIP1 together with RAB33B and VPS16, disease genes for Smith-McCort dysplasia 2 and a multisystem disorder with short stature, respectively, highlight the importance of autophagy in skeletal development.


Asunto(s)
Autofagosomas , Autofagia , Animales , Autofagosomas/metabolismo , Autofagia/genética , Drosophila , Homocigoto , Humanos , Lisosomas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
Am J Hum Genet ; 104(6): 1139-1157, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155282

RESUMEN

Zimmermann-Laband syndrome (ZLS) is characterized by coarse facial features with gingival enlargement, intellectual disability (ID), hypertrichosis, and hypoplasia or aplasia of nails and terminal phalanges. De novo missense mutations in KCNH1 and KCNK4, encoding K+ channels, have been identified in subjects with ZLS and ZLS-like phenotype, respectively. We report de novo missense variants in KCNN3 in three individuals with typical clinical features of ZLS. KCNN3 (SK3/KCa2.3) constitutes one of three members of the small-conductance Ca2+-activated K+ (SK) channels that are part of a multiprotein complex consisting of the pore-forming channel subunits, the constitutively bound Ca2+ sensor calmodulin, protein kinase CK2, and protein phosphatase 2A. CK2 modulates Ca2+ sensitivity of the channels by phosphorylating SK-bound calmodulin. Patch-clamp whole-cell recordings of KCNN3 channel-expressing CHO cells demonstrated that disease-associated mutations result in gain of function of the mutant channels, characterized by increased Ca2+ sensitivity leading to faster and more complete activation of KCNN3 mutant channels. Pretreatment of cells with the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole revealed basal inhibition of wild-type and mutant KCNN3 channels by CK2. Analogous experiments with the KCNN3 p.Val450Leu mutant previously identified in a family with portal hypertension indicated basal constitutive channel activity and thus a different gain-of-function mechanism compared to the ZLS-associated mutant channels. With the report on de novo KCNK4 mutations in subjects with facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival overgrowth, we propose to combine the phenotypes caused by mutations in KCNH1, KCNK4, and KCNN3 in a group of neurological potassium channelopathies caused by an increase in K+ conductance.


Asunto(s)
Anomalías Múltiples/etiología , Anomalías Craneofaciales/etiología , Fibromatosis Gingival/etiología , Mutación con Ganancia de Función , Deformidades Congénitas de la Mano/etiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Anomalías Múltiples/patología , Adulto , Secuencia de Aminoácidos , Animales , Células CHO , Niño , Preescolar , Anomalías Craneofaciales/patología , Cricetinae , Cricetulus , Femenino , Fibromatosis Gingival/patología , Deformidades Congénitas de la Mano/patología , Humanos , Activación del Canal Iónico , Masculino , Persona de Mediana Edad , Fenotipo , Conformación Proteica , Homología de Secuencia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
17.
Am J Med Genet A ; 188(8): 2448-2453, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35451546

RESUMEN

The cardiofacioneurodevelopmental syndrome (CFNDS) is characterized by craniofacial anomalies including bilateral cleft lip and palate, cardiac, skeletal, and neurodevelopmental features and additional variable manifestations. Whole-exome sequencing revealed homozygous loss-of-function variants in CCDC32 (alternative name: C15orf57) in both previously described patients. ccdc32 deletion in zebrafish suggests a ciliary contribution to the pathomechanism. We report a 9-year-old female patient with CFNDS caused by a homozygous 32,583-bp deletion affecting CCDC32. Independent of the affected CCDC32 transcript variant this deletion likely leads to loss of the encoded protein. The patient had intellectual disability, marked hypertelorism, bilateral cleft lip and palate, and short stature. She had bilateral conductive hearing loss, small hands and feet, and finger abnormalities. Brain imaging disclosed hypoplastic corpus callosum. We describe a core phenotype comprising developmental delay and bilateral cleft lip and palate in the three individuals with CFNDS. Variable abnormalities of the face, brain, heart, fingers, and toes and postnatal growth retardation or microcephaly can be present. Possible involvement of the uncharacterized CCDC32 protein in the adapter protein 2 (AP2) complex regulating clathrin-mediated endocytosis has been reported. Cleft palate and cardiac defects observed in mice deficient of different AP2 subunits support a CCDC32 function in the AP2 complex.


Asunto(s)
Labio Leporino , Fisura del Paladar , Anomalías Craneofaciales , Discapacidad Intelectual , Animales , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Anomalías Craneofaciales/genética , Femenino , Discapacidad Intelectual/genética , Ratones , Fenotipo , Pez Cebra
18.
Brain ; 144(10): 3036-3049, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34037727

RESUMEN

Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes are membrane-tethering heterotetramers located at the trans-Golgi network and recycling endosomes, respectively. GARP and EARP share the three subunits VPS51, VPS52 and VPS53, while VPS50 is unique to EARP and VPS54 to GARP. Retrograde transport of endosomal cargos to the trans-Golgi network is mediated by GARP and endocytic recycling by EARP. Here we report two unrelated individuals with homozygous variants in VPS50, a splice variant (c.1978-1G>T) and an in-frame deletion (p.Thr608del). Both patients had severe developmental delay, postnatal microcephaly, corpus callosum hypoplasia, seizures and irritability, transient neonatal cholestasis and failure to thrive. Light and transmission electron microscopy of liver from one revealed the absence of gamma-glutamyltransferase at bile canaliculi, with mislocalization to basolateral membranes and abnormal tight junctions. Using patient-derived fibroblasts, we identified reduced VPS50 protein accompanied by reduced levels of VPS52 and VPS53. While the transferrin receptor internalization rate was normal in cells of both patients, recycling of the receptor to the plasma membrane was significantly delayed. These data underscore the importance of VPS50 and/or the EARP complex in endocytic recycling and suggest an additional function in establishing cell polarity and trafficking between basolateral and apical membranes in hepatocytes. Individuals with biallelic hypomorphic variants in VPS50, VPS51 or VPS53 show an overarching neurodegenerative disorder with severe developmental delay, intellectual disability, microcephaly, early-onset epilepsy and variable atrophy of the cerebellum, cerebrum and/or brainstem. The term 'GARP/EARP deficiency' designates disorders in such individuals.


Asunto(s)
Colestasis/diagnóstico , Colestasis/genética , Variación Genética/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Proteínas de Transporte Vesicular/genética , Alelos , Células Cultivadas , Preescolar , Colestasis/complicaciones , Humanos , Lactante , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/complicaciones , Linaje , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/fisiología
19.
Brain ; 144(7): 2092-2106, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33704440

RESUMEN

T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here, we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy, the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analysed possible effects on Cav3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with Cav3.3-I860N showing the strongest and Cav3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in Cav3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the Cav3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the Cav3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the Cav3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type Cav3.3 to slow oscillations with Cav3.3-I860N and an intermediate firing mode with Cav3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Activación del Canal Iónico/genética , Trastornos del Neurodesarrollo/genética , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/patología , Niño , Simulación por Computador , Femenino , Mutación con Ganancia de Función , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Moleculares , Modelos Neurológicos , Mutación Missense , Neuronas/metabolismo , Linaje , Conformación Proteica
20.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077086

RESUMEN

Dominant KCNQ1 variants are well-known for underlying cardiac arrhythmia syndromes. The two heterozygous KCNQ1 missense variants, R116L and P369L, cause an allelic disorder characterized by pituitary hormone deficiency and maternally inherited gingival fibromatosis. Increased K+ conductance upon co-expression of KCNQ1 mutant channels with the beta subunit KCNE2 is suggested to underlie the phenotype; however, the reason for KCNQ1-KCNE2 (Q1E2) channel gain-of-function is unknown. We aimed to discover the genetic defect in a single individual and three family members with gingival overgrowth and identified the KCNQ1 variants P369L and V185M, respectively. Patch-clamp experiments demonstrated increased constitutive K+ conductance of V185M-Q1E2 channels, confirming the pathogenicity of the novel variant. To gain insight into the pathomechanism, we examined all three disease-causing KCNQ1 mutants. Manipulation of the intracellular Ca2+ concentration prior to and during whole-cell recordings identified an impaired Ca2+ sensitivity of the mutant KCNQ1 channels. With low Ca2+, wild-type KCNQ1 currents were efficiently reduced and exhibited a pre-pulse-dependent cross-over of current traces and a high-voltage-activated component. These features were absent in mutant KCNQ1 channels and in wild-type channels co-expressed with calmodulin and exposed to high intracellular Ca2+. Moreover, co-expression of calmodulin with wild-type Q1E2 channels and loading the cells with high Ca2+ drastically increased Q1E2 current amplitudes, suggesting that KCNE2 normally limits the resting Q1E2 conductance by an increased demand for calcified calmodulin to achieve effective channel opening. Our data link impaired Ca2+ sensitivity of the KCNQ1 mutants R116L, V185M and P369L to Q1E2 gain-of-function that is associated with a particular KCNQ1 channelopathy.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Calmodulina/genética , Mutación con Ganancia de Función , Canal de Potasio KCNQ1/genética , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA