Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Chem Biol ; 20(2): 221-233, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884807

RESUMEN

Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.


Asunto(s)
Oxidorreductasas , Ubiquinona , Animales , Ratones , Drosophila melanogaster , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma , Ubiquinona/metabolismo , Proteínas Portadoras
2.
Mol Cell ; 71(6): 1051-1063.e6, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174290

RESUMEN

Protein kinase RNA-activated (PKR) induces immune response by sensing viral double-stranded RNAs (dsRNAs). However, growing evidence suggests that PKR can also be activated by endogenously expressed dsRNAs. Here, we capture these dsRNAs by formaldehyde-mediated crosslinking and immunoprecipitation sequencing and find that various noncoding RNAs interact with PKR. Surprisingly, the majority of the PKR-interacting RNA repertoire is occupied by mitochondrial RNAs (mtRNAs). MtRNAs can form intermolecular dsRNAs owing to bidirectional transcription of the mitochondrial genome and regulate PKR and eIF2α phosphorylation to control cell signaling and translation. Moreover, PKR activation by mtRNAs is counteracted by PKR phosphatases, disruption of which causes apoptosis from PKR overactivation even in uninfected cells. Our work unveils dynamic regulation of PKR even without infection and establishes PKR as a sensor for nuclear and mitochondrial signaling cues in regulating cellular metabolism.


Asunto(s)
eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/fisiología , Línea Celular , Núcleo Celular , Activación Enzimática , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación/métodos , Mitocondrias/genética , Fosforilación , ARN Bicatenario/genética , ARN Mitocondrial/genética , ARN Mitocondrial/fisiología , ARN no Traducido/genética , ARN no Traducido/fisiología , Transducción de Señal , eIF-2 Quinasa/inmunología
3.
FASEB J ; 37(5): e22900, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039823

RESUMEN

Ubiquitin-specific protease 4 (USP4) is highly overexpressed in colon cancer and acts as a potent protooncogenic protein by deubiquitinating ß-catenin. However, its prominent roles in tumor formation and migration in cancer cells are not fully understood by its deubiquitinating enzyme (DUB) activity on ß-catenin. Thus, we investigated an additional role of USP4 in cancer. In this study, we identified cortactin (CTTN), an actin-binding protein involved in the regulation of cytoskeleton dynamics and a potential prognostic marker for cancers, as a new cellular interacting partner of USP4 from proximal labeling of HCT116 cells. Additionally, the role of USP4 in CTTN activation and promotion of cell dynamics and migration was investigated in HCT116 cells. We confirmed that interacting of USP4 with CTTN increased cell movement. This finding was supported by the fact that USP4 overexpression in HCT116 cells with reduced expression of CTTN was insufficient to promote cell migration. Additionally, we observed that USP4 overexpression led to a significant increase in CTTN phosphorylation, which is a requisite mechanism for cell migration, by regulating Src/focal adhesion kinase (FAK) binding to CTTN and its activation. Our results suggest that USP4 plays a dual role in cancer progression, including stabilization of ß-catenin as a DUB and interaction with CTTN to promote cell dynamics by inducing CTTN phosphorylation. Therefore, this study demonstrates that USP4 is important for cancer progression and is a good target for treating or preventing cancer.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , Células HCT116 , beta Catenina/metabolismo , Cortactina/metabolismo , Movimiento Celular/fisiología , Proteasas Ubiquitina-Específicas/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(22): 12143-12154, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424107

RESUMEN

Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteoma/análisis , Biotinilación , Células HEK293 , Humanos , Proteoma/metabolismo , Coloración y Etiquetado
5.
Proc Natl Acad Sci U S A ; 117(22): 12109-12120, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414919

RESUMEN

The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteoma/análisis , Proteínas de Unión a Tacrolimus/metabolismo , Calcio/metabolismo , Humanos , Biogénesis de Organelos , Proteoma/metabolismo , Transducción de Señal
6.
J Am Chem Soc ; 139(10): 3651-3662, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28156110

RESUMEN

The inner mitochondrial membrane (IMM) proteome plays a central role in maintaining mitochondrial physiology and cellular metabolism. Various important biochemical reactions such as oxidative phosphorylation, metabolite production, and mitochondrial biogenesis are conducted by the IMM proteome, and mitochondria-targeted therapeutics have been developed for IMM proteins, which is deeply related for various human metabolic diseases including cancer and neurodegenerative diseases. However, the membrane topology of the IMM proteome remains largely unclear because of the lack of methods to evaluate it in live cells in a high-throughput manner. In this article, we reveal the in vivo topological direction of 135 IMM proteins, using an in situ-generated radical probe with genetically targeted peroxidase (APEX). Owing to the short lifetime of phenoxyl radicals generated in situ by submitochondrial targeted APEX and the impermeability of the IMM to small molecules, the solvent-exposed tyrosine residues of both the matrix and intermembrane space (IMS) sides of IMM proteins were exclusively labeled with the radical probe in live cells by Matrix-APEX and IMS-APEX, respectively and identified by mass spectrometry. From this analysis, we confirmed 58 IMM protein topologies and we could determine the topological direction of 77 IMM proteins whose topology at the IMM has not been fully characterized. We also found several IMM proteins (e.g., LETM1 and OXA1) whose topological information should be revised on the basis of our results. Overall, our identification of structural information on the mitochondrial inner-membrane proteome can provide valuable insights for the architecture and connectome of the IMM proteome in live cells.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteoma/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Mapeo de Interacción de Proteínas
7.
ACS Cent Sci ; 10(6): 1231-1241, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38947196

RESUMEN

Mitochondrial thermogenesis is a process in which heat is generated by mitochondrial respiration. In living organisms, the thermogenic mechanisms that maintain body temperature have been studied extensively in fat cells with little knowledge on how mitochondrial heat may act beyond energy expenditure. Here, we highlight that the exothermic oxygen reduction reaction (ΔH f° = -286 kJ/mol) is the main source of the protonophore-induced mitochondrial thermogenesis, and this heat is conducted to other cellular organelles, including the nucleus. As a result, mitochondrial heat that reached the nucleus initiated the classical heat shock response, including the formation of nuclear stress granules and the localization of heat shock factor 1 (HSF1) to chromatin. Consequently, activated HSF1 increases the level of gene expression associated with the response to thermal stress in mammalian cells. Our results illustrate heat generated within the cells as a potential source of mitochondria-nucleus communication and expand our understanding of the biological functions of mitochondria in cell physiology.

8.
Cancer Commun (Lond) ; 44(1): 47-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133457

RESUMEN

BACKGROUND: Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS: Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and ß-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS: Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.


Asunto(s)
Proteínas de la Membrana , Mitocondrias , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Movimiento Celular/fisiología , Mitocondrias/metabolismo , Lisosomas , Colesterol/metabolismo
9.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895210

RESUMEN

Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM). Single molecule tracking revealed highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and capture at MERCS. Overexpression of FKBP8 was sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrated their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.

10.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38014048

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a central role in microglial biology and the pathogenesis of Alzheimer's disease (AD). Besides DNAX-activating protein 12 (DAP12), a communal adaptor for TREM2 and many other receptors, other cellular interactors of TREM2 remain largely elusive. We employed a 'proximity labeling' approach using a biotin ligase, TurboID, for mapping protein-protein interactions in live mammalian cells. We discovered novel TREM2-proximal proteins with diverse functions, including those localized to the Mitochondria-ER contact sites (MERCs), a dynamic subcellular 'hub' implicated in a number of crucial cell physiology such as lipid metabolism. TREM2 deficiency alters the thickness (inter-organelle distance) of MERCs, a structural parameter of metabolic state, in microglia derived from human induced pluripotent stem cells. Our TurboID-based TREM2 interactome study suggest novel roles for TREM2 in the structural plasticity of the MERCs, raising the possibility that dysregulation of MERC-related TREM2 functions contribute to AD pathobiology.

11.
Cell Rep ; 42(8): 112835, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37478010

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Antivirales/metabolismo , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo
12.
Cell Rep ; 42(12): 113544, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060381

RESUMEN

Dysregulated iron or Ca2+ homeostasis has been reported in Parkinson's disease (PD) models. Here, we discover a connection between these two metals at the mitochondria. Elevation of iron levels causes inward mitochondrial Ca2+ overflow, through an interaction of Fe2+ with mitochondrial calcium uniporter (MCU). In PD neurons, iron accumulation-triggered Ca2+ influx across the mitochondrial surface leads to spatially confined Ca2+ elevation at the outer mitochondrial membrane, which is subsequently sensed by Miro1, a Ca2+-binding protein. A Miro1 blood test distinguishes PD patients from controls and responds to drug treatment. Miro1-based drug screens in PD cells discover Food and Drug Administration-approved T-type Ca2+-channel blockers. Human genetic analysis reveals enrichment of rare variants in T-type Ca2+-channel subtypes associated with PD status. Our results identify a molecular mechanism in PD pathophysiology and drug targets and candidates coupled with a convenient stratification method.


Asunto(s)
Calcio , Enfermedad de Parkinson , Humanos , Calcio/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Preparaciones Farmacéuticas/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo
13.
Cell Chem Biol ; 29(12): 1739-1753.e6, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36272407

RESUMEN

Direct identification of the proteins targeted by small molecules can provide clues for disease diagnosis, prevention, and drug development. Despite concentrated attempts, there are still technical limitations associated with the elucidation of direct interactors. Herein, we report a target-ID system called proximity-based compound-binding protein identification (PROCID), which combines our direct analysis workflow of proximity-labeled proteins (Spot-ID) with the HaloTag system to efficiently identify the dynamic proteomic landscape of drug-binding proteins. We successfully identified well-known dasatinib-binding proteins (ABL1, ABL2) and confirmed the unapproved dasatinib-binding kinases (e.g., BTK and CSK) in a live chronic myeloid leukemia cell line. PROCID also identified the DNA helicase protein SMARCA2 as a dasatinib-binding protein, and the ATPase domain was confirmed to be the binding site of dasatinib using a proximity ligation assay (PLA) and in cellulo biotinylation assay. PROCID thus provides a robust method to identify unknown drug-interacting proteins in live cells that expedites the mode of action of the drug.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Proteómica , Humanos , Dasatinib/farmacología , Proteínas Portadoras , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Biotinilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA