Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38569542

RESUMEN

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Humanos , Ratones , Colitis/metabolismo , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Hibridación Fluorescente in Situ/métodos , Inflamación/metabolismo , Inflamación/patología , Comunicación Celular , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología
2.
Nature ; 619(7969): 348-356, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344597

RESUMEN

The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.


Asunto(s)
Linfocitos B , Melanoma , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación de Linfocitos , Melanoma/inmunología , Melanoma/patología , Melanoma/prevención & control , Linfocitos T/citología , Linfocitos T/inmunología , Citometría de Flujo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Presentación de Antígeno , Receptores de Antígenos de Linfocitos B/genética , Análisis de Expresión Génica de una Sola Célula , Carga Tumoral , Interferón Tipo I
3.
J Immunol ; 205(12): 3247-3262, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33168576

RESUMEN

T follicular regulatory (TFR) cells limit Ab responses, but the underlying mechanisms remain largely unknown. In this study, we identify Fgl2 as a soluble TFR cell effector molecule through single-cell gene expression profiling. Highly expressed by TFR cells, Fgl2 directly binds to B cells, especially light-zone germinal center B cells, as well as to T follicular helper (TFH) cells, and directly regulates B cells and TFH in a context-dependent and type 2 Ab isotype-specific manner. In TFH cells, Fgl2 induces the expression of Prdm1 and a panel of checkpoint molecules, including PD1, TIM3, LAG3, and TIGIT, resulting in TFH cell dysfunction. Mice deficient in Fgl2 had dysregulated Ab responses at steady-state and upon immunization. In addition, loss of Fgl2 results in expansion of autoreactive B cells upon immunization. Consistent with this observation, aged Fgl2-/- mice spontaneously developed autoimmunity associated with elevated autoantibodies. Thus, Fgl2 is a TFR cell effector molecule that regulates humoral immunity and limits systemic autoimmunity.


Asunto(s)
Formación de Anticuerpos , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Fibrinógeno/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Enfermedades Autoinmunes/genética , Fibrinógeno/genética , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Linfocitos T Reguladores/inmunología , Proteína del Gen 3 de Activación de Linfocitos
4.
Biol Reprod ; 102(4): 828-842, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31901087

RESUMEN

The maternal immune system tolerates semi-allogeneic placental tissues during pregnancy. Fas ligand (FASLG) and tumor necrosis factor superfamily 10 (TNFSF10) are known to be components of maternal immune tolerance in humans and mice. However, the role of FASLG and TNFSF10 in the tolerance process has not been studied in pigs, which form a true epitheliochorial type placenta. Thus, the present study examined the expression and function of FASLG and TNFSF10 and their receptors at the maternal-conceptus interface in pigs. The endometrium and conceptus tissues expressed FASLG and TNFSF10 and their receptor mRNAs during pregnancy in a stage-specific manner. During pregnancy, FASLG and TNFSF10 proteins were localized predominantly to endometrial luminal epithelial cells with strong signals on Day 30 to term and on Day 15, respectively, and receptors for TNFSF10 were localized to some stromal cells. Interferon-γ (IFNG) increased the expression of TNFSF10 and FAS in endometrial tissues. Co-culture of porcine endometrial epithelial cells over-expressing TNFSF10 with peripheral blood mononuclear cells yielded increased apoptotic cell death of lymphocytes and myeloid cells. In addition, many apoptotic T cells were found in the endometrium on Day 15 of pregnancy. The present study demonstrated that FASLG and TNFSF10 were expressed at the maternal-conceptus interface and conceptus-derived IFNG increased endometrial epithelial TNFSF10, which, in turn, induced apoptotic cell death of immune cells. These results suggest that endometrial epithelial FASLG and TNFSF10 may be critical for the formation of micro-environmental immune privilege at the maternal-conceptus interface for the establishment and maintenance of pregnancy in pigs.


Asunto(s)
Proteína Ligando Fas/metabolismo , Privilegio Inmunológico/fisiología , Placentación/fisiología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Útero/metabolismo , Receptor fas/metabolismo , Animales , Epitelio/metabolismo , Ciclo Estral/fisiología , Proteína Ligando Fas/genética , Femenino , Placenta/metabolismo , Embarazo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Porcinos , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptor fas/genética
5.
Vet Res ; 51(1): 68, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448402

RESUMEN

Low-pathogenicity avian influenza H9N2 remains an endemic disease worldwide despite continuous vaccination, indicating the need for an improved vaccine strategy. Bacillus subtilis (B. subtilis), a gram-positive and endospore-forming bacterium, is a non-pathogenic species that has been used in probiotic formulations for both animals and humans. The objective of the present study was to elucidate the effect of B. subtilis spores as adjuvants in chickens administered inactivated avian influenza virus H9N2. Herein, the adjuvanticity of B. subtilis spores in chickens was demonstrated by enhancement of H9N2 virus-specific IgG responses. B. subtilis spores enhanced the proportion of B cells and the innate cell population in splenocytes from chickens administered both inactivated H9N2 and B. subtilis spores (Spore + H9N2). Furthermore, the H9N2 and spore administration induced significantly increased expression of the pro-inflammatory cytokines IL-1ß and IL-6 compared to that in the H9N2 only group. Additionally, total splenocytes from chickens immunized with inactivated H9N2 in the presence or absence of B. subtilis spores were re-stimulated with inactivated H9N2. The subsequent results showed that the extent of antigen-specific CD4+ and CD8+ T cell proliferation was higher in the Spore + H9N2 group than in the group administered only H9N2. Taken together, these data demonstrate that B. subtilis spores, as adjuvants, enhance not only H9N2 virus-specific IgG but also CD4+ and CD8+ T cell responses, with an increase in pro-inflammatory cytokine production. This approach to vaccination with inactivated H9N2 together with a B. subtilis spore adjuvant in chickens produces a significant effect on antigen-specific antibody and T cell responses against avian influenza virus.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Linfocitos B/inmunología , Bacillus subtilis/química , Pollos , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/inmunología , Linfocitos T/inmunología , Adyuvantes Inmunológicos/química , Animales , Anticuerpos Antivirales/inmunología , Antivirales/química , Antivirales/farmacología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Enfermedades de las Aves de Corral/inmunología , Esporas Bacterianas/química
6.
Asian-Australas J Anim Sci ; 29(8): 1075-82, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27189643

RESUMEN

Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature), nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC) and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

7.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214800

RESUMEN

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.

8.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893254

RESUMEN

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Asunto(s)
Anfirregulina , Astrocitos , Comunicación Autocrina , Pruebas Genéticas , Técnicas Analíticas Microfluídicas , Microglía , Astrocitos/fisiología , Pruebas Genéticas/métodos , Ensayos Analíticos de Alto Rendimiento , Técnicas Analíticas Microfluídicas/métodos , Microglía/fisiología , Anfirregulina/genética , Comunicación Autocrina/genética , Expresión Génica , Humanos
9.
Sci Rep ; 12(1): 941, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042907

RESUMEN

Bacteriophages, simply phages, have long been used as a potential alternative to antibiotics for livestock due to their ability to specifically kill enterotoxigenic Escherichia coli (ETEC), which is a major cause of diarrhea in piglets. However, the control of ETEC infection by phages within intestinal epithelial cells, and their relationship with host immune responses, remain poorly understood. In this study, we evaluated the effect of phage EK99P-1 against ETEC K99-infected porcine intestinal epithelial cell line (IPEC-J2). Phage EK99P-1 prevented ETEC K99-induced barrier disruption by attenuating the increased permeability mediated by the loss of tight junction proteins such as zonula occludens-1 (ZO-1), occludin, and claudin-3. ETEC K99-induced inflammatory responses, such as interleukin (IL)-8 secretion, were decreased by treatment with phage EK99P-1. We used a IPEC-J2/peripheral blood mononuclear cell (PBMC) transwell co-culture system to investigate whether the modulation of barrier disruption and chemokine secretion by phage EK99P-1 in ETEC K99-infected IPEC-J2 would influence immune cells at the site of basolateral. The results showed that phage EK99P-1 reduced the mRNA expression of ETEC K99-induced pro-inflammatory cytokines, IL-1ß and IL-8, from PBMC collected on the basolateral side. Together, these results suggest that phage EK99P-1 prevented ETEC K99-induced barrier dysfunction in IPEC-J2 and alleviated inflammation caused by ETEC K99 infection. Reinforcement of the intestinal barrier, such as regulation of permeability and cytokines, by phage EK99P-1 also modulates the immune cell inflammatory response.


Asunto(s)
Escherichia coli Enterotoxigénica/virología , Mucosa Intestinal/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Animales , Adhesión Bacteriana/fisiología , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidad , Línea Celular , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/fisiología , Células Epiteliales/metabolismo , Escherichia coli/genética , Escherichia coli/fisiología , Escherichia coli/virología , Infecciones por Escherichia coli/prevención & control , Inflamación/metabolismo , Enfermedades Intestinales/metabolismo , Intestinos , Ocludina/metabolismo , Permeabilidad , Porcinos , Uniones Estrechas/metabolismo
10.
Immune Netw ; 22(2): e16, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35573152

RESUMEN

The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-ß2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.

11.
Nat Commun ; 12(1): 6059, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663827

RESUMEN

The strength of the T cell receptor interaction with self-ligands affects antigen-specific immune responses. However, the precise function and underlying mechanisms are unclear. Here, we demonstrate that naive CD8+ T cells with relatively high self-reactivity are phenotypically heterogeneous owing to varied responses to type I interferon, resulting in three distinct subsets, CD5loLy6C-, CD5hiLy6C-, and CD5hiLy6C+ cells. CD5hiLy6C+ cells differ from CD5loLy6C- and CD5hiLy6C- cells in terms of gene expression profiles and functional properties. Moreover, CD5hiLy6C+ cells demonstrate more extensive antigen-specific expansion upon viral infection, with enhanced differentiation into terminal effector cells and reduced memory cell generation. Such features of CD5hiLy6C+ cells are imprinted in a steady-state and type I interferon dependence is observed even for monoclonal CD8+ T cell populations. These findings demonstrate that self-reactivity controls the functional diversity of naive CD8+ T cells by co-opting tonic type I interferon signaling.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígenos CD5/inmunología , Diferenciación Celular , Proliferación Celular , Ratones , Ratones Endogámicos C57BL , Fenotipo , Receptor de Interferón alfa y beta/genética , Receptores de Interferón/genética , Factor de Transcripción STAT1/genética , Transducción de Señal , Receptor de Interferón gamma
12.
Sci Adv ; 7(36): eabg8764, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516905

RESUMEN

Naïve CD8+ T cell quiescence is maintained at a steady state. Although this state of quiescence involves various cell-intrinsic and cell-extrinsic regulators, the mechanisms underlying this regulation remain incompletely understood. Here, we found that signal transducer and activator of transcription 1 (STAT1), a key transcription factor downstream of interferon receptor (IFNR) signaling, plays a cell-intrinsic role in maintaining naïve CD8+ T cell quiescence. STAT1-deficient mice showed enhanced proliferation of peripheral naïve CD8+ T cells, which resulted in an abnormal increase in the number of CD44hi memory/activated phenotype cells and an enlargement of secondary lymphoid tissues. This phenomenon was not observed in IFNR-deficient mice but was paradoxically dependent on type I interferon and its alternative signaling pathway via the STAT4­RagD­lysosomal mTORC1 axis. Collectively, these findings underline the importance of STAT1 in regulating the homeostasis of peripheral naïve CD8+ T cells by suppressing their responsiveness to homeostatic cues at a steady state.

13.
Pharmaceutics ; 11(11)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731667

RESUMEN

Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines.

14.
Front Microbiol ; 10: 447, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930867

RESUMEN

Respiratory syncytial virus (RSV) is a major pathogen that infects lower respiratory tract and causes a common respiratory disease. Despite serious pathological consequences with this virus, effective treatments for controlling RSV infection remain unsolved, along with poor innate immune responses induced at the initial stage of RSV infection. Such a poor innate defense mechanism against RSV leads us to study the role of alveolar macrophage (AM) that is one of the primary innate immune cell types in the respiratory tract and may contribute to protective responses against RSV infection. As an effective strategy for enhancing anti-viral function of AM, this study suggests the intranasal administration of Bacillus subtilis spore which induces expansion of AM in the lung with activation and enhanced production of inflammatory cytokines along with several genes associated with M1 macrophage differentiation. Such effect by spore on AM was largely dependent on TLR-MyD88 signaling and, most importantly, resulted in a profound reduction of viral titers and pathological lung injury upon RSV infection. Taken together, our results suggest a protective role of AM in RSV infection and its functional modulation by B. subtilis spore, which may be a useful and potential therapeutic approach against RSV.

15.
Acta Biomater ; 90: 362-372, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30922953

RESUMEN

Developing effective mucosal subunit vaccine for the Streptococcus pneumoniae has been unsuccessful mainly because of their poor immunogenicity with insufficient memory T and B cell responses. We thus address whether such limitation can be overcome by introducing effective adjuvants that can enhance immunity and show here that polysorbitol transporter (PST) serves as a mucosal adjuvant for a subunit vaccine against the Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) with PST adjuvant induced protective immunity against S. pneumoniae challenge, especially long-term T and B cell immune responses. Moreover, we found that the PST preferentially induced T helper (Th) responses toward Th2 or T follicular helper (Tfh) cells and, importantly, that the responses were mediated through antigen-presenting cells via activating a peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway. Thus, these data indicate that PST can be used as an effective and safe mucosal vaccine adjuvant against S. pneumoniae infection. STATE OF SIGNIFICANCE: In this study, we suggested the nanoparticle forming adjuvant, PST works as an effective adjuvant for the pneumococcal vaccine, PspA. The PspA subunit vaccine together with PST adjuvant efficiently induced protective immunity, even in the long-term memory responses, against Streptococcus pneumoniae lethal challenge. We found that PspA with PST adjuvant induced dendritic cell activation followed by follicular helper T cell responses through PPAR-γ pathway resulting long-term memory antibody-producing cells. Consequently, in this paper, we suggest the mechanism for safe nanoparticle forming subunit vaccine adjuvant against pneumococcal infection.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Nanopartículas/química , Infecciones Neumocócicas , Vacunas Neumococicas , Streptococcus pneumoniae/inmunología , Vacunación , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Administración Intranasal , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/uso terapéutico , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/patología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/farmacología
16.
Front Immunol ; 10: 3063, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038618

RESUMEN

Probiotics can be an effective treatment for atopic dermatitis (AD), while their mechanism of action is still unclear. Here, we induced AD in mice with 2,4-dinitrochlorobenzene and administrated YK4, a probiotic mixture consisting of Lactobacillus acidophilus CBT LA1, L. plantarum CBT LP3, Bifidobacterium breve CBT BR3, and B. lactis CBT BL3. Then, we have validated the underlying mechanism for the alleviation of AD by YK4 from the intestinal and systematic immunological perspectives. Administration of YK4 in AD mice alleviated the symptoms of AD by suppressing the expression of skin thymic stromal lymphopoietin and serum immunoglobulin E eliciting excessive T-helper (Th) 2 cell-mediated responses. YK4 inhibited Th2 cell population through induce the proportion of Th1 cells in spleen and Treg cells in Peyer's patches and mesenteric lymph node (mLN). CD103+ dendritic cells (DCs) in mLN and the spleen were significantly increased in AD mice administered with YK4 when compared to AD mice. Furthermore, galectin-9 was significantly increased in the gut of AD mice administered with YK4. In vitro experiments were performed using bone marrow-derived DCs (BMDC) and CD4+ T cells to confirm the immune mechanisms of YK4 and galectin-9. The expression of CD44, a receptor of galectin-9, together with programmed death-ligand 1 was significantly upregulated in BMDCs following treatment with YK4. IL-10 and IL-12 were upregulated when BMDCs were treated with YK4. Cytokines together with co-receptors from DCs play a major role in the differentiation and activation of CD4+ T cells. Proliferation of Tregs and Th1 cell activation were enhanced when CD4+T cells were co-cultured with YK4-treated BMDCs. Galectin-9 appeared to contribute at least partially to the proliferation of Tregs. The results further suggested that DCs treated with YK4 induced the differentiation of naïve T cells toward Th1 and Tregs. At the same time, YK4 alleviated AD symptoms by inhibiting Th2 response. Thus, the present study suggested a potential role of YK4 as an effective immunomodulatory agent in AD patients.


Asunto(s)
Dermatitis Atópica/etiología , Dermatitis Atópica/metabolismo , Suplementos Dietéticos , Galectinas/metabolismo , Inmunomodulación , Probióticos/administración & dosificación , Animales , Citocinas/metabolismo , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Fenotipo , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología
17.
Front Immunol ; 9: 196, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29541070

RESUMEN

γδ T cells, known to be an important source of innate IL-17 in mice, provide critical contributions to host immune responses. Development and function of γδ T cells are directed by networks of diverse transcription factors (TFs). Here, we examine the role of the zinc finger TFs, Kruppel-like factor 10 (KLF10), in the regulation of IL-17-committed CD27- γδ T (γδ27--17) cells. We found selective augmentation of Vγ4+ γδ27- cells with higher IL-17 production in KLF10-deficient mice. Surprisingly, KLF10-deficient CD127hi Vγ4+ γδ27--17 cells expressed higher levels of CD5 than their wild-type counterparts, with hyper-responsiveness to cytokine, but not T-cell receptor, stimuli. Thymic maturation of Vγ4+ γδ27- cells was enhanced in newborn mice deficient in KLF10. Finally, a mixed bone marrow chimera study indicates that intrinsic KLF10 signaling is requisite to limit Vγ4+ γδ27--17 cells. Collectively, these findings demonstrate that KLF10 regulates thymic development of Vγ4+ γδ27- cells and their peripheral homeostasis at steady state.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Interleucina-17/inmunología , Factores de Transcripción de Tipo Kruppel/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Transducción de Señal , Linfocitos T/inmunología , Animales , Células de la Médula Ósea/inmunología , Antígenos CD5/genética , Regulación de la Expresión Génica , Homeostasis , Subunidad alfa del Receptor de Interleucina-7/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
18.
Antiviral Res ; 146: 86-95, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28842266

RESUMEN

Porcine epidemic diarrhea virus (PEDV) invades porcine intestinal epithelial cells (IECs) and causes diarrhea and dehydration in pigs. In the present study, we showed a suppression of PEDV infection in porcine jejunum intestinal epithelial cells (IPEC-J2) by an increase in autophagy. Autophagy was activated by rapamycin at a dose that does not affect cell viability and tight junction permeability. The induction of autophagy was examined by LC3I/LC3II conversion. To confirm the autophagic-flux (entire autophagy pathway), autophagolysosomes were examined by an immunofluorescence assay. Pre-treatment with rapamycin significantly restricted not only a 1 h infection but also a longer infection (24 h) with PEDV, while this effect disappeared when autophagy was blocked. Co-localization of PEDV and autophagosomes suggests that PEDV could be a target of autophagy. Moreover, alleviation of PEDV-induced cell death in IPEC-J2 cells pretreated with rapamycin demonstrates a protective effect of rapamycin against PEDV-induced epithelial cell death. Collectively, the present study suggests an early prevention against PEDV infection in IPEC-J2 cells via autophagy that might be an effective strategy for the restriction of PEDV, and opens up the possibility of the use of rapamycin in vivo as an effective prophylactic and prevention treatment.


Asunto(s)
Autofagia , Células Epiteliales/virología , Intestinos/virología , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Sirolimus/farmacología , Animales , Antivirales/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Interacciones Huésped-Patógeno , Intestinos/citología , Intestinos/efectos de los fármacos , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Células Vero
19.
Nat Commun ; 7: 13373, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841348

RESUMEN

Continuous contact with self-major histocompatibility complex (MHC) ligands is essential for survival of naïve T cells but not memory cells. This surprising finding implies that T cell subsets may vary in their relative T-cell receptor (TCR) sensitivity. Here we show that in CD8+T cells TCR sensitivity correlates inversely with levels of CD5, a marker for strong self-MHC reactivity. We also show that TCR sensitivity is lower in memory CD8+ T cells than naïve cells. In both situations, TCR hypo-responsiveness applies only to short-term TCR signalling events and not to proliferation, and correlates directly with increased expression of a phosphatase, CD45 and reciprocal decreased expression of activated LCK. Inhibition by high CD45 on CD8+ T cells may protect against overt TCR auto-MHC reactivity, while enhanced sensitivity to cytokines ensures strong responses to foreign antigens.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Antígenos Comunes de Leucocito/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Antígenos CD5/inmunología , Antígenos CD5/metabolismo , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Interleucina-2/genética , Interleucina-2/inmunología , Interleucina-2/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/metabolismo
20.
J Microbiol Biotechnol ; 25(7): 1170-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26032359

RESUMEN

Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains unclear. MCF-7 cells were treated with CK (0-70 micrometer) for 24 or 48 h. Cell proliferation and death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Changes in downstream signaling molecules involved in cell death, including glycogen synthase kinase 3ß (GSK3ß), GSK3ß, ß-catenin, and cyclin D1, were analyzed by western blot assay. To block GSK3ß signaling, MCF-7 cells were pretreated with GSK3ß inhibitors 1 h prior to CK treatment. Cell death and the expression of ß-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7 cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the GSK3ß signaling pathway in MCF-7 cells. CK inhibited GSK3ß phosphorylation, thereby suppressing the expression of ß-catenin and cyclin D1. Our results suggest that CK induces programmed necrosis in MCF-7 breast cancer cells via the GSK3ß signaling pathway.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ginsenósidos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Western Blotting , Proliferación Celular/efectos de los fármacos , Femenino , Citometría de Flujo , Formazáns/análisis , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células MCF-7 , Coloración y Etiquetado , Sales de Tetrazolio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA