Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Immunol ; 21(12): 1506-1516, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33028979

RESUMEN

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Humanos , Inmunofenotipificación
2.
Nature ; 611(7934): 139-147, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044993

RESUMEN

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Asunto(s)
Autoanticuerpos , Linfocitos B , COVID-19 , Humanos , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , COVID-19/inmunología , COVID-19/patología , COVID-19/fisiopatología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Inmunoglobulina G/inmunología , Análisis de la Célula Individual , Autoantígenos/inmunología , Membrana Basal/inmunología , Síndrome Post Agudo de COVID-19
3.
Artículo en Inglés | MEDLINE | ID: mdl-38878020

RESUMEN

BACKGROUND: Biologic therapies inhibiting the IL-4 or IL-5 pathways are very effective in the treatment of asthma and other related conditions. However, the cytokines IL-4 and IL-5 also play a role in the generation of adaptive immune responses. Although these biologics do not cause overt immunosuppression, their effect in primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization has not been studied completely. OBJECTIVE: Our aim was to evaluate the antibody and cellular immunity after SARS-CoV-2 mRNA vaccination in patients on biologics (PoBs). METHODS: Patients with severe asthma or atopic dermatitis who were taking benralizumab, dupilumab, or mepolizumab and had received the initial dose of the 2-dose adult SARS-CoV-2 mRNA vaccine were enrolled in a prospective, observational study. As our control group, we used a cohort of immunologically healthy subjects (with no significant immunosuppression) who were not taking biologics (NBs). We used a multiplexed immunoassay to measure antibody levels, neutralization assays to assess antibody function, and flow cytometry to quantitate Spike-specific lymphocytes. RESULTS: We analyzed blood from 57 patients in the PoB group and 46 control subjects from the NB group. The patients in the PoB group had lower levels of SARS-CoV-2 antibodies, pseudovirus neutralization, live virus neutralization, and frequencies of Spike-specific B and CD8 T cells at 6 months after vaccination. In subgroup analyses, patients with asthma who were taking biologics had significantly lower pseudovirus neutralization than did subjects with asthma who were not taking biologics. CONCLUSION: The patients in the PoB group had reduced SARS-CoV-2-specific antibody titers, neutralizing activity, and virus-specific B- and CD8 T-cell counts. These results have implications when considering development of a more individualized immunization strategy in patients who receive biologic medications blocking IL-4 or IL-5 pathways.

4.
Immunity ; 43(1): 132-45, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26187412

RESUMEN

Antibody responses to viral infections are sustained for decades by long-lived plasma cells (LLPCs). However, LLPCs have yet to be characterized in humans. Here we used CD19, CD38, and CD138 to identify four PC subsets in human bone marrow (BM). We found that the CD19(-)CD38(hi)CD138(+) subset was morphologically distinct, differentially expressed PC-associated genes, and exclusively contained PCs specific for viral antigens to which the subjects had not been exposed for more than 40 years. Protein sequences of measles- and mumps-specific circulating antibodies were encoded for by CD19(-)CD38(hi)CD138(+) PCs in the BM. Finally, we found that CD19(-)CD38(hi)CD138(+) PCs had a distinct RNA transcriptome signature and human immunoglobulin heavy chain (VH) repertoire that was relatively uncoupled from other BM PC subsets and probably represents the B cell response's "historical record" of antigenic exposure. Thus, our studies define human LLPCs and provide a mechanism for the life-long maintenance of anti-viral antibodies in the serum.


Asunto(s)
Anticuerpos Antivirales/inmunología , Células de la Médula Ósea/inmunología , Virus del Sarampión/inmunología , Virus de la Parotiditis/inmunología , Células Plasmáticas/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Adulto , Anciano , Anticuerpos Antivirales/sangre , Antígenos CD19/metabolismo , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , ARN Mensajero/genética , Sindecano-1/metabolismo , Adulto Joven
5.
PLoS Pathog ; 15(9): e1007974, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31536608

RESUMEN

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify 'bona fide' relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi-rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.


Asunto(s)
Inmunidad Humoral , Malaria/inmunología , Malaria/parasitología , Plasmodium cynomolgi/inmunología , Plasmodium cynomolgi/patogenicidad , Animales , Anticuerpos Antiprotozoarios/sangre , Linfocitos B/inmunología , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Inmunidad Humoral/genética , Inmunoglobulina G/sangre , Memoria Inmunológica/genética , Macaca mulatta , Malaria/genética , Malaria Vivax/genética , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Masculino , Parasitemia/genética , Parasitemia/inmunología , Parasitemia/parasitología , Plasmodium vivax/inmunología , Plasmodium vivax/patogenicidad , Recurrencia , Esporozoítos/inmunología , Esporozoítos/patogenicidad
6.
Nat Commun ; 15(1): 1899, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429276

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Citocinas , Transcriptoma , Lupus Eritematoso Sistémico/genética , Células Productoras de Anticuerpos
7.
medRxiv ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39006446

RESUMEN

Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present. It is also positive after vaccination when spike proteins elicit an acute immune response. Applying the same principles for long-COVID patients, MENSA is positive for SARS2 in 40% of PASC vs none of the COVID recovered (CR) patients without any sequelae demonstrating ongoing SARS2 viral inflammation only in PASC. Additionally, in PASC patients, MENSAs are also positive for Epstein-Barr Virus (EBV) in 37%, Human Cytomegalovirus (CMV) in 23%, and herpes simplex virus 2 (HSV2) in 15% compared to 17%, 4%, and 4% in CR controls respectively. Combined, a total of 60% of PASC patients have a positive MENSA for SARS2, EBV, CMV, and/or HSV2. MENSA offers a unique antibody snapshot to reveal the underlying viral drivers in long-COVID thus demonstrating the persistence of SARS2 and reactivation of viral herpes in 60% of PASC patients.

8.
Mucosal Immunol ; 16(3): 287-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931600

RESUMEN

Immunoglobulin (Ig) E is central to the pathogenesis of allergic conditions, including allergic fungal rhinosinusitis. However, little is known about IgE antibody secreting cells (ASCs). We performed single-cell RNA sequencing from cluster of differentiation (CD)19+ and CD19- ASCs of nasal polyps from patients with allergic fungal rhinosinusitis (n = 3). Nasal polyps were highly enriched in CD19+ ASCs. Class-switched IgG and IgA ASCs were dominant (95.8%), whereas IgE ASCs were rare (2%) and found only in the CD19+ compartment. Through Ig gene repertoire analysis, IgE ASCs shared clones with IgD-CD27- "double-negative" B cells, IgD+CD27+ unswitched memory B cells, and IgD-CD27+ switched memory B cells, suggesting ontogeny from both IgD+ and memory B cells. Transcriptionally, mucosal IgE ASCs upregulate pathways related to antigen presentation, chemotaxis, B cell receptor stimulation, and survival compared with non-IgE ASCs. Additionally, IgE ASCs have a higher expression of genes encoding lysosomal-associated protein transmembrane 5 (LAPTM5) and CD23, as well as upregulation of CD74 (receptor for macrophage inhibitory factor), store-operated Calcium entry-associated regulatory factor (SARAF), and B cell activating factor receptor (BAFFR), which resemble an early minted ASC phenotype. Overall, these findings reinforce the paradigm that human ex vivo mucosal IgE ASCs have a more immature plasma cell phenotype than other class-switched mucosal ASCs and suggest unique functional roles for mucosal IgE ASCs in concert with Ig secretion.


Asunto(s)
Pólipos Nasales , Humanos , Inmunoglobulina E , Células Productoras de Anticuerpos , Mucosa Nasal , Fenotipo , Análisis de la Célula Individual
9.
medRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398319

RESUMEN

Novel mRNA vaccines have resulted in a reduced number of SARS-CoV-2 infections and hospitalizations. Yet, there is a paucity of studies regarding their effectiveness on immunocompromised autoimmune subjects. In this study, we enrolled subjects naïve to SARS-CoV-2 infections from two cohorts of healthy donors (HD, n=56) and systemic lupus erythematosus (SLE, n=69). Serological assessments of their circulating antibodies revealed a significant reduction of potency and breadth of neutralization in the SLE group, only partially rescued by a 3rd booster dose. Immunological memory responses in the SLE cohort were characterized by a reduced magnitude of spike-reactive B and T cell responses that were strongly associated with poor seroconversion. Vaccinated SLE subjects were defined by a distinct expansion and persistence of a DN2 spike-reactive memory B cell pool and a contraction of spike-specific memory cTfh cells, contrasting with the sustained germinal center (GC)-driven activity mediated by mRNA vaccination in the healthy population. Among the SLE-associated factors that dampened the vaccine responses, treatment with the monoclonal antibody anti-BAFF/Belimumab (a lupus FDA-approved B cell targeting agent) profoundly affected the vaccine responsiveness by restricting the de novo B cell responses and promoting stronger extra-follicular (EF)-mediated responses that were associated with poor immunogenicity and impaired immunological memory. In summary, this study interrogates antigen-specific responses and characterized the immune cell landscape associated with mRNA vaccination in SLE. The identification of factors associated with reduced vaccine efficacy illustrates the impact of SLE B cell biology on mRNA vaccine responses and provides guidance for the management of boosters and recall vaccinations in SLE patients according to their disease endotype and modality of treatment.

10.
Res Sq ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37461641

RESUMEN

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibodies, some of which are present in high titers in a sustained, B cell-independent fashion consistent with their generation from long-lived plasma cells (LLPC). Active SLE displays high numbers of circulating antibody-secreting cells (ASC). Understanding the mechanisms of generation and survival of SLE ASC would contribute important insight into disease pathogenesis and novel targeted therapies. We studied the properties of SLE ASC through a systematic analysis of their phenotypic, molecular, structural, and functional features. Our results indicate that in active SLE, relative to healthy post-immunization responses, blood ASC contain a much larger fraction of newly generated mature CD19- CD138+ ASC similar to bone marrow (BM) LLPC. SLE ASC were characterized by morphological and structural features of premature maturation. Additionally, SLE ASC express high levels of CXCR4 and CD138, and molecular programs consistent with increased longevity based on pro-survival and attenuated pro-apoptotic pathways. Notably, SLE ASC demonstrate autocrine production of APRIL and IL-10 and experience prolonged in vitro survival. Combined, our findings indicate that SLE ASC are endowed with enhanced peripheral maturation, survival and BM homing potential suggesting that these features likely underlie BM expansion of autoreactive PC.

11.
Adv Healthc Mater ; 10(15): e2001947, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160143

RESUMEN

Isolating cells based on their secreted proteins remain a challenge. The authors demonstrate a capacity for high throughput single-cell protein secretion analysis and isolation based on heterofunctional particles combined with fluorescence activated cell sorting (FACS). The workflow shows that antibody secreting cells (ASCs) specific for the H1 protein from influenza virus can be isolated from B cells. The workflow consists of incubating anti-CD27 particles with the ASCs, capturing locally secreted immunoglobulins with Protein G on the particles, and identifying immunoglobulins specific to H1 via fluorescent labeled antigens followed by FACS to enrich antigen-specific ASCs. Two particles designs, Janus and mixed, are tested with hybridoma cells. Mixed particles are found to improve antibody collection, while Janus particles are found to bind target cells more effectively. Targeted hybridoma cells in coculture with non-specific hybridoma cells are identified with a sensitivity of 96% and specificity of 98%. Heterofunctional particles are used to capture ASCs that secrete antibodies specific for influenza virus from B cells from healthy adults isolated from blood after vaccination. Positive H1-tetramer sorted ASCs are validated using single ASC cultures and identify 23/56 cells specific for H1 demonstrating 164-fold enrichment from total B cells and 14.6-fold enrichment from total ASCs.


Asunto(s)
Células Productoras de Anticuerpos , Antígenos , Adulto , Anticuerpos Monoclonales , Humanos , Hibridomas , Vacunación
12.
PLoS One ; 16(11): e0259644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34767590

RESUMEN

BACKGROUND: Streptococcus pneumoniae infections cause morbidity and mortality worldwide. A rapid, simple diagnostic method could reduce the time needed to introduce definitive therapy potentially improving patient outcomes. METHODS: We introduce two new methods for diagnosing S. pneumoniae infections by measuring the presence of newly activated, pathogen-specific, circulating Antibody Secreting Cells (ASC). First, ASC were detected by ELISpot assays that measure cells secreting antibodies specific for signature antigens. Second, the antibodies secreted by isolated ASC were collected in vitro in a novel matrix, MENSA (media enriched with newly synthesized antibodies) and antibodies against S. pneumoniae antigens were measured using Luminex immunoassays. Each assay was evaluated using blood from S. pneumoniae and non-S. pneumoniae-infected adult patients. RESULTS: We enrolled 23 patients with culture-confirmed S. pneumoniae infections and 24 controls consisting of 12 non-S. pneumoniae infections, 10 healthy donors and two colonized with S. pneumoniae. By ELISpot assays, twenty-one of 23 infected patients were positive, and all 24 controls were negative. Using MENSA samples, four of five S. pneumoniae-infected patients were positive by Luminex immunoassays while all five non-S. pneumoniae-infected patients were negative. CONCLUSION: Specific antibodies produced by activated ASC may provide a simple diagnostic for ongoing S. pneumoniae infections. This method has the potential to diagnose acute bacterial infections.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Células Productoras de Anticuerpos , Pruebas Diagnósticas de Rutina/métodos , Inmunoensayo/métodos , Infecciones Neumocócicas , Streptococcus pneumoniae/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Células Productoras de Anticuerpos/citología , Células Productoras de Anticuerpos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infecciones Neumocócicas/diagnóstico , Infecciones Neumocócicas/inmunología , Adulto Joven
13.
medRxiv ; 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-33106819

RESUMEN

An emerging feature of COVID-19 is the identification of autoreactivity in patients with severe disease that may contribute to disease pathology, however the origin and resolution of these responses remain unclear. Previously, we identified strong extrafollicular B cell activation as a shared immune response feature between both severe COVID-19 and patients with advanced rheumatic disease. In autoimmune settings, this pathway is associated with relaxed peripheral tolerance in the antibody secreting cell compartment and the generation of de novo autoreactive responses. Investigating these responses in COVID-19, we performed single-cell repertoire analysis on 7 patients with severe disease. In these patients, we identify the expansion of a low-mutation IgG1 fraction of the antibody secreting cell compartment that are not memory derived, display low levels of selective pressure, and are enriched for autoreactivity-prone IGHV4-34 expression. Within this compartment, we identify B cell lineages that display specificity to both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against glomerular basement membrane, and describe progressive, broad, clinically relevant autoreactivity within these patients correlated with disease severity. Importantly, we identify anti-carbamylated protein responses as a common hallmark and candidate biomarker of broken peripheral tolerance in severe COVID-19. Finally, we identify the contraction of this pathway upon recovery, and re-establishment of tolerance standards coupled with a concomitant loss of acute-derived ASCs irrespective of antigen specificity. In total, this study reveals the origins, breadth, and resolution of acute-phase autoreactivity in severe COVID-19, with significant implications in both early interventions and potential treatment of patients with post-COVID sequelae.

14.
Immunohorizons ; 5(5): 322-335, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001652

RESUMEN

SARS-CoV-2 has caused over 100,000,000 cases and almost 2,500,000 deaths globally. Comprehensive assessment of the multifaceted antiviral Ab response is critical for diagnosis, differentiation of severity, and characterization of long-term immunity, especially as COVID-19 vaccines become available. Severe disease is associated with early, massive plasmablast responses. We developed a multiplex immunoassay from serum/plasma of acutely infected and convalescent COVID-19 patients and prepandemic and postpandemic healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 nucleocapsid (N), spike domain 1 (S1), S1-receptor binding domain (RBD) and S1-N-terminal domain. For diagnosis, the combined [IgA + IgG + IgM] or IgG levels measured for N, S1, and S1-RBD yielded area under the curve values ≥0.90. Virus-specific Ig levels were higher in patients with severe/critical compared with mild/moderate infections. A strong prozone effect was observed in sera from severe/critical patients-a possible source of underestimated Ab concentrations in previous studies. Mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared with severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 mo after symptom onset. Measurement of the Ab responses in sera from 18 COVID-19-vaccinated patients revealed specific responses for the S1-RBD Ag and none against the N protein. This highly sensitive, SARS-CoV-2-specific, multiplex immunoassay measures the magnitude, complexity, and kinetics of the Ab response and can distinguish serum Ab responses from natural SARS-CoV-2 infections (mild or severe) and mRNA COVID-19 vaccines.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19/administración & dosificación , COVID-19 , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Vacunación , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/inmunología , COVID-19/prevención & control , Femenino , Humanos , Inmunoensayo , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
15.
medRxiv ; 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32511635

RESUMEN

A wide clinical spectrum has become a hallmark of the SARS-CoV-2 (COVID-19) pandemic, although its immunologic underpinnings remain to be defined. We have performed deep characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation as previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody secreting cell expansion and early production of high levels of SARS-CoV-2-specific antibodies. Yet, these patients fared poorly with elevated inflammatory biomarkers, multi-organ failure, and death. Combined, the findings strongly indicate a major pathogenic role for immune activation in subsets of COVID-19 patients. Our study suggests that, as in autoimmunity, targeted immunomodulatory therapy may be beneficial in specific patient subpopulations that can be identified by careful immune profiling.

16.
bioRxiv ; 2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33299998

RESUMEN

BACKGROUND: SARS-CoV-2 has caused over 36,000,000 cases and 1,000,000 deaths globally. Comprehensive assessment of the multifaceted anti-viral antibody response is critical for diagnosis, differentiation of severe disease, and characterization of long-term immunity. Initial observations suggest that severe disease is associated with higher antibody levels and greater B cell/plasmablast responses. A multi-antigen immunoassay to define the complex serological landscape and clinical associations is essential. METHODS: We developed a multiplex immunoassay and evaluated serum/plasma from adults with RT-PCR-confirmed SARS-CoV-2 infections during acute illness (N=52) and convalescence (N=69); and pre-pandemic (N=106) and post-pandemic (N=137) healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 Nucleocapsid (N), Spike domain 1 (S1), receptor binding domain (S1-RBD) and S1-N-terminal domain (S1-NTD). RESULTS: To diagnose infection, the combined [IgA+IgG+IgM] or IgG for N, S1, and S1-RBD yielded AUC values -0.90 by ROC curves. From days 6-30 post-symptom onset, the levels of antigen-specific IgG, IgA or [IgA+IgG+IgM] were higher in patients with severe/critical compared to mild/moderate infections. Consistent with excessive concentrations of antibodies, a strong prozone effect was observed in sera from severe/critical patients. Notably, mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared to severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 months. CONCLUSION: This SARS-CoV-2 multiplex immunoassay measures the magnitude, complexity and kinetics of the antibody response against multiple viral antigens. The IgG and combined-isotype SARS-CoV-2 multiplex assay is highly diagnostic of acute and convalescent disease and may prognosticate severity early in illness. ONE SENTENCE SUMMARY: In contrast to patients with moderate infections, those with severe COVID-19 develop prominent, early antibody responses to S1 and N proteins.

17.
J Immunol Methods ; 340(1): 42-7, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18996127

RESUMEN

The rise in influenza-specific neutralizing antibody levels is proceeded by a burst of antigen-specific antibody secreting cells (ASC) or plasmablasts identified in peripheral blood approximately 5-10 days post immunization. Blood antigen-specific ASC may function as an immune marker of vaccine responses in comparison to the pre- and post-neutralizing titers; however, some have questioned whether there is adequate survival of ASC isolated from peripheral blood after freezing, making multi-center vaccine trials difficult. Here, we demonstrate similar frequencies of influenza-specific ASC from fresh and frozen peripheral blood mononuclear cells (PBMC). Influenza Hemagglutinin (HA) H1, H3, and H7-specific ASC IgG ELISpots frequencies were compared from the same fresh and frozen PBMC 7 days after 2006 Trivalent Influenza Vaccine (TIV) in 10 young healthy subjects. H1-, H3-, and H7-specific IgG ASC spots/10(6) from fresh PBMC on day 7 were 229+/-341, 98+/-90, and 6+/-11 respectively. Total IgG ASC spots/million PBMC pre- and 7-day post-vaccination were 290+/-188 (0.029% PBMC) and 1691+/-836 (0.17% PBMC) respectively. There was no difference in the H1 -H3-, and total specific ASC IgG ELISpot frequencies from the fresh versus frozen PBMC on day 7 (p=0.43, 0.28, 0.28 respectively). These results demonstrate feasibility of testing whether antigen-specific ASC from frozen PBMC are an early biomarker of long-term antibody responses in multi-center vaccine trials.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Leucocitos Mononucleares/inmunología , Adulto , Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/sangre , Gripe Humana/prevención & control , Masculino , Adulto Joven
18.
JCI Insight ; 4(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045577

RESUMEN

Human antibody-secreting cells (ASCs) triggered by immunization are globally recognized as CD19loCD38hiCD27hi. Yet, different vaccines give rise to antibody responses of different longevity, suggesting ASC populations are heterogeneous. We define circulating-ASC heterogeneity in vaccine responses using multicolor flow cytometry, morphology, VH repertoire, and RNA transcriptome analysis. We also tested differential survival using a human cell-free system that mimics the bone marrow (BM) microniche. In peripheral blood, we identified 3 CD19+ and 2 CD19- ASC subsets. All subsets contributed to the vaccine-specific responses and were characterized by in vivo proliferation and activation. The VH repertoire demonstrated strong oligoclonality with extensive interconnectivity among the 5 subsets and switched memory B cells. Transcriptome analysis showed separation of CD19+ and CD19- subsets that included pathways such as cell cycle, hypoxia, TNF-α, and unfolded protein response. They also demonstrated similar long-term in vitro survival after 48 days. In summary, vaccine-induced ASCs with different surface markers (CD19 and CD138) are derived from shared proliferative precursors yet express distinctive transcriptomes. Equal survival indicates that all ASC compartments are endowed with long-lived potential. Accordingly, in vivo survival of peripheral long-lived plasma cells may be determined in part by their homing and residence in the BM microniche.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Células Plasmáticas/inmunología , Transcriptoma , Adulto , Anciano , Formación de Anticuerpos , Antígenos CD19/inmunología , Linfocitos B/inmunología , Médula Ósea/inmunología , Células de la Médula Ósea/inmunología , Femenino , Humanos , Inmunización , Inmunoglobulina G , Cinética , Masculino , Persona de Mediana Edad , Fenotipo , Tétanos/inmunología , Vacunación , Adulto Joven
19.
Nat Commun ; 10(1): 372, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655540

RESUMEN

The original version of this Article omitted a declaration from the Competing Interests statement, which should have included the following: 'A patent has been applied for by Emory University with F.E.L, I.S. and D.C. N. as named inventors. The patent application number is PCT/US2016/036650'. This has now been corrected in both the PDF and HTML versions of the Article.

20.
Nat Commun ; 9(1): 3698, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209264

RESUMEN

Human antibody-secreting cells (ASC) in peripheral blood are found after vaccination or infection but rapidly apoptose unless they migrate to the bone marrow (BM). Yet, elements of the BM microenvironment required to sustain long-lived plasma cells (LLPC) remain elusive. Here, we identify BM factors that maintain human ASC > 50 days in vitro. The critical components of the cell-free in vitro BM mimic consist of products from primary BM mesenchymal stromal cells (MSC), a proliferation-inducing ligand (APRIL), and hypoxic conditions. Comparative analysis of protein-protein interactions between BM-MSC proteomics with differential RNA transcriptomics of blood ASC and BM LLPC identify two major survival factors, fibronectin and YWHAZ. The MSC secretome proteins and hypoxic conditions play a role in LLPC survival utilizing mechanisms that downregulate mTORC1 signaling and upregulate hypoxia signatures. In summary, we identify elements of the BM survival niche critical for maturation of blood ASC to BM LLPC.


Asunto(s)
Médula Ósea/metabolismo , Supervivencia Celular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas 14-3-3/metabolismo , Adulto , Células Productoras de Anticuerpos/citología , Células Productoras de Anticuerpos/metabolismo , Supervivencia Celular/genética , Células Cultivadas , Femenino , Fibronectinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA