Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35383362

RESUMEN

Nuclear receptors (NRs) are important biological targets of endocrine-disrupting chemicals (EDCs). Identifying chemicals that can act as EDCs and modulate the function of NRs is difficult because of the time and cost of in vitro and in vivo screening to determine the potential hazards of the 100 000s of chemicals that humans are exposed to. Hence, there is a need for computational approaches to prioritize chemicals for biological testing. Machine learning (ML) techniques are alternative methods that can quickly screen millions of chemicals and identify those that may be an EDC. Computational models of chemical binding to multiple NRs have begun to emerge. Recently, a Nuclear Receptor Activity (NuRA) dataset, describing experimentally derived small-molecule activity against various NRs has been created. We have used the NuRA dataset to develop an ensemble of ML-based models to predict the agonism, antagonism, binding and effector binding of small molecules to nine different human NRs. We defined the applicability domain of the ML models as a measure of Tanimoto similarity to the molecules in the training set, which enhanced the performance of the developed classifiers. We further developed a user-friendly web server named 'NR-ToxPred' to predict the binding of chemicals to the nine NRs using the best-performing models for each receptor. This web server is freely accessible at http://nr-toxpred.cchem.berkeley.edu. Users can upload individual chemicals using Simplified Molecular-Input Line-Entry System, CAS numbers or sketch the molecule in the provided space to predict the compound's activity against the different NRs and predict the binding mode for each.


Asunto(s)
Disruptores Endocrinos , Receptores Citoplasmáticos y Nucleares , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo , Humanos , Aprendizaje Automático , Receptores Citoplasmáticos y Nucleares/genética
2.
Environ Sci Technol ; 58(10): 4487-4499, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422483

RESUMEN

Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Humanos , Receptores Citoplasmáticos y Nucleares , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo
3.
Environ Res ; 244: 117832, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056610

RESUMEN

BACKGROUND: Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES: This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS: We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS: Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION: This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Hidrocarburos Clorados , MicroARNs , Plaguicidas , Bifenilos Policlorados , Animales , Humanos , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/análisis , Éteres Difenilos Halogenados/toxicidad , Éteres Difenilos Halogenados/análisis , Estudios Prospectivos , Hidrocarburos Clorados/toxicidad , Hidrocarburos Clorados/análisis , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Plaguicidas/toxicidad , Plaguicidas/análisis , Fluorocarburos/toxicidad
4.
Ecotoxicol Environ Saf ; 269: 115756, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056125

RESUMEN

Triphenyl phosphate (TPhP), a widely used organophosphate-flame retardant, is ubiquitously found in household environments and may adversely affect human health. Evidence indicates that TPhP exposure causes metabolic dysfunctions in vivo; however, the underlying mechanism of such adverse effects has not been comprehensively investigated. Herein, we utilized two in vitro models including mouse and human preadipocytes to delineate adipogenic mechanisms of TPhP. The results revealed that both mouse and human preadipocytes exposed to TPhP concentration-dependently accumulated more fat through a significant upregulation of epidermal growth factor receptor (EGFR). We demonstrated that TPhP significantly promoted adipogenesis through the activation of EGFR/ERK/AKT signaling pathway as evident by a drastic reduction in adipogenesis of preadipocytes cotreated with inhibitors of EGFR and its major effectors. Furthermore, we confirmed the mechanism of TPhP-induced metabolic dysfunctions in vivo. We observed that male mice perinatally exposed to TPhP had a significant increase in adiposity, hepatic triglycerides, insulin resistance, plasma insulin levels, hypotension, and phosphorylated EGFR in gonadal fat. Interestingly, an administration of a potent and selective EGFR inhibitor significantly ameliorated the adverse metabolic effects caused by TPhP. Our findings uncovered a potential mechanism of TPhP-induced metabolic dysfunctions and provided implications on toxic metabolic effects posed by environmental chemicals.


Asunto(s)
Retardadores de Llama , Organofosfatos , Proteínas Proto-Oncogénicas c-akt , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Receptores ErbB/metabolismo , Retardadores de Llama/toxicidad , Organofosfatos/toxicidad , Organofosfatos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Sistema de Señalización de MAP Quinasas
5.
Environ Sci Technol ; 57(40): 14817-14826, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37756184

RESUMEN

Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.


Asunto(s)
Ácidos Alcanesulfónicos , Cirugía Bariátrica , Contaminantes Ambientales , Fluorocarburos , Animales , Humanos , Adolescente , Estudios de Cohortes , Hígado , Fluorocarburos/análisis
6.
Environ Res ; 217: 114832, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403651

RESUMEN

Due to their persistence and toxicity, perfluoroalkyl and polyfluoroalkyl substances (PFASs) constitute significant hazards to human health and the environment. Their effects include immune suppression, altered hormone levels, and osteoporosis. Recently, the most studied PFAS, perfluorooctanoic acid (PFOA), was shown to competitively binding to the Vitamin D receptor (VDR). VDR plays a crucial role in regulating genes involved in maintaining immune, endocrine, and calcium homeostasis, suggesting it may be a target for at least some of the health effects of PFAS. Hence, this study examined the potential binding of 5206 PFASs to VDR using molecular docking, molecular dynamics, and free energy binding calculations. We identified 14 PFAS that are predicted to interact strongly with VDR, similar to the natural ligands. We further investigated the interactions of VDR with 256 PFASs of established commercial importance. Eighty-three (32%) of these 256 commercially important PFAS were predicted to be stronger binders to VDR than PFOA. At least 16 PFASs of regulatory importance, because they have been identified in water supplies and human blood samples, were also more potent binders to VDR than PFOA. Further, PFASs are usually found together in contaminated drinking water and human blood samples, which raises the concern that multiple PFASs may act together as a mixture on VDR function, potentially producing harmful effects on the immune, endocrine, and bone homeostasis.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Simulación del Acoplamiento Molecular , Receptores de Calcitriol , Fluorocarburos/toxicidad , Caprilatos/toxicidad
7.
Environ Res ; 220: 115227, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608759

RESUMEN

BACKGROUND: Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES: We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS: We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS: PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS: Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.


Asunto(s)
Trastorno del Espectro Autista , Bifenilos Policlorados , Animales , Ratones , Humanos , Niño , Femenino , Embarazo , Bifenilos Policlorados/análisis , Placenta/química , Metilación de ADN , Exposición Materna/efectos adversos
8.
Environ Health ; 20(1): 37, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794904

RESUMEN

BACKGROUND: Exposure to the bioaccumulative pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) has been associated with increased risk of insulin resistance and obesity in humans and experimental animals. These effects appear to be mediated by reduced brown adipose tissue (BAT) thermogenesis, which is regulated by the sympathetic nervous system. Although the neurotoxicity of DDT is well-established, whether DDT alters sympathetic innervation of BAT is unknown. We hypothesized that perinatal exposure to DDT or DDE promotes thermogenic dysfunction by interfering with sympathetic regulation of BAT thermogenesis. METHODS: Pregnant C57BL/6 J mice were administered environmentally relevant concentrations of DDTs (p,p'-DDT and o,p'-DDT) or DDE (p,p'-DDE), 1.7 mg/kg and 1.31 mg/kg, respectively, from gestational day 11.5 to postnatal day 5 by oral gavage, and longitudinal body temperature was recorded in male and female offspring. At 4 months of age, metabolic parameters were measured in female offspring via indirect calorimetry with or without the ß3 adrenergic receptor agonist, CL 316,243. Immunohistochemical and neurochemical analyses of sympathetic neurons innervating BAT were evaluated. RESULTS: We observed persistent thermogenic impairment in adult female, but not male, mice perinatally exposed to DDTs or p,p'-DDE. Perinatal DDTs exposure significantly impaired metabolism in adult female mice, an effect rescued by treatment with CL 316,243 immediately prior to calorimetry experiments. Neither DDTs nor p,p'-DDE significantly altered BAT morphology or the concentrations of norepinephrine and its metabolite DHPG in the BAT of DDTs-exposed mice. However, quantitative immunohistochemistry revealed a 20% decrease in sympathetic axons innervating BAT in adult female mice perinatally exposed to DDTs, but not p,p'-DDE, and 48 and 43% fewer synapses in stellate ganglia of mice exposed to either DDTs or p,p'-DDE, respectively, compared to control. CONCLUSIONS: These data demonstrate that perinatal exposure to DDTs or p,p'-DDE impairs thermogenesis by interfering with patterns of connectivity in sympathetic circuits that regulate BAT.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , DDT/toxicidad , Diclorodifenil Dicloroetileno/toxicidad , Plaguicidas/toxicidad , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , DDT/farmacocinética , Diclorodifenil Dicloroetileno/farmacocinética , Femenino , Masculino , Intercambio Materno-Fetal , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ganglio Estrellado/efectos de los fármacos , Distribución Tisular
9.
Am J Physiol Endocrinol Metab ; 318(5): E667-E677, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045263

RESUMEN

The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human epidemiological studies support arsenic exposure as a risk factor for T2D, although the precise mechanism is unclear. We hypothesized that chronic arsenic ingestion alters glucose homeostasis by impairing adaptive thermogenesis, i.e., body heat production in cold environments. Arsenic is a pervasive environmental contaminant, with more than 200 million people worldwide currently exposed to arsenic-contaminated drinking water. Male C57BL/6J mice exposed to sodium arsenite in drinking water at 300 µg/L for 9 wk experienced significantly decreased metabolic heat production when acclimated to chronic cold tolerance testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic exposure increased total fat mass and subcutaneous inguinal white adipose tissue (iWAT) mass. RNA sequencing analysis of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid metabolism. Western blotting in WAT confirmed that arsenic significantly decreased TOMM20, a correlate of mitochondrial abundance; PGC1A, a master regulator of mitochondrial biogenesis; and, CPT1B, the rate-limiting step of fatty acid oxidation (FAO). Our findings show that chronic arsenic exposure impacts the mitochondrial proteins of thermogenic tissues involved in energy expenditure and substrate regulation, providing novel mechanistic evidence for arsenic's role in T2D development.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Arsenitos/farmacología , Compuestos de Sodio/farmacología , Termogénesis/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Metacrilatos , Ratones , Ratones Endogámicos C57BL , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Superficie Celular/metabolismo , Siloxanos , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
10.
Int J Obes (Lond) ; 44(8): 1723-1732, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32415255

RESUMEN

BACKGROUND: Obesity is a malnourishment epidemic worldwide. A meta-analysis of prospective human studies across the world demonstrated a consistent positive association between maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) and children with obesity. The present study evaluates the association of maternal exposure to DDT and DDE with the risk of obesity in daughters during their mid-life in a prospective birth cohort with up to 53 years of follow-up. METHODS: Gravidas' blood was collected during their 1959-1967 enrollment into the prospective Child Health and Development Studies birth cohort in California. Their daughters aged 44-53 years had their height, weight, and waist circumference measured during a home visit to evaluate associations of daughters' adiposity and relative risk of overweight and obesity with their mothers' prenatal serum levels of DDT and DDE quantified by gas chromatograph-tandem mass spectrometer (n = 511). RESULTS: Maternal o,p'-DDT was positively associated with body mass index (ß = 0.59 kg/m2 per ln ng/ml (95th percentile confidence interval, 95% CI: 0.17, 1.00)) and waist circumference (ß = 1.19 cm per ln ng/ml (95% CI: 0.26, 2.13)) in multivariable models. Maternal o,p'-DDT was positively associated with a 26% (95% CI: 6-49) to 31% (95% CI: 6-62) higher risk of overweight and the same magnitude of additional risk for obesity, based on waist circumference and BMI definitions respectively, in multivariable models. CONCLUSIONS: These data indicate maternal DDT exposure is significantly associated with increased obesity risk among middle-aged women independent of the obesity definition, confounding, and obesity risk factors. Our findings suggest that policies supporting the use of DDT for malaria vector abatement need to consider the obesity risk as a health cost when weighing the benefits of using DDT in malaria vector control.


Asunto(s)
DDT/efectos adversos , Exposición Materna/efectos adversos , Obesidad/epidemiología , Plaguicidas/efectos adversos , Adiposidad , Adulto , Índice de Masa Corporal , California , Diclorodifenil Dicloroetileno/efectos adversos , Femenino , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Sobrepeso/epidemiología , Estudios Prospectivos , Factores de Riesgo , Circunferencia de la Cintura
11.
Environ Res ; 190: 109920, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32795691

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Fluorocarburos/toxicidad , Aprendizaje Automático , Tamizaje Masivo , Simulación del Acoplamiento Molecular , Receptores Androgénicos
12.
Lipids Health Dis ; 19(1): 249, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287856

RESUMEN

BACKGROUND: Lipoproteins at aberrant levels are known to play a role in cardiovascular disease. The metabolite of the insecticide dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), physically associates with lipids and accumulates in adipose tissue. Little is known about which lipoproteins associate with p,p'-DDE. An association between p,p'-DDE exposure and altered levels of circulating lipids was assessed in a large human cohort using a detailed analysis of lipoprotein content. METHODS: Plasma samples were collected from the subset of 75-year old Swedes in the Prospective Investigation of the Vasculature of Uppsala Seniors (PIVUS) cohort who were not prescribed lipid lowering medication (n = 571). p,p'-DDE concentrations in plasma were measured using high-throughput solid phase extraction and gas chromatography-high resolution mass spectrometry. Analysis of plasma lipoprotein content was performed with nuclear magnetic resonance spectroscopy. RESULTS: Detectable levels of p,p'-DDE were found in the plasma samples of all subjects. Elevated p,p'-DDE levels were associated with increased concentrations of lipoproteins of all diameters, with the exception of high density lipoprotein (HDL) of diameters between 14.3 nm-10.9 nm. Of the lipoprotein constituents, triglycerides were most uniformly associated with elevated p,p'-DDE across lipoproteins. p,p'-DDE was furthermore associated with apolipoprotein B, but not apolipoprotein A1. CONCLUSIONS: The positive associations observed between each lipoprotein class and elevated p,p'-DDE support previous data suggesting that p,p'-DDE interacts with lipoproteins within plasma. It is speculated that both physio-chemical and biological mechanisms may explain why p,p'-DDE does not uniformly associate with lipids across lipoproteins.


Asunto(s)
DDT/efectos adversos , Diclorodifenil Dicloroetileno/sangre , Insecticidas/efectos adversos , Lipoproteínas/sangre , Anciano , Anciano de 80 o más Años , Apolipoproteína A-I/sangre , Apolipoproteína B-100/sangre , Femenino , Humanos , Lípidos/sangre , Lipoproteínas HDL/sangre , Espectroscopía de Resonancia Magnética , Masculino , Factores de Riesgo , Encuestas y Cuestionarios , Suecia/epidemiología
13.
Environ Sci Technol ; 53(23): 13906-13918, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31746186

RESUMEN

Persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and other organochlorine compounds, are abundant in the environment and in foodstuffs from the Indian subcontinent. These environmental contaminants have been associated with a higher risk of diabetes in numerous studies. Asian Indians are well known to have a high risk of diabetes compared with other populations, and this risk is also found in migrant populations of Asian Indians in the United States, Europe, and elsewhere. We hypothesized that high plasma concentrations of POPs in Asian Indian migrants are linked to a variety of diabetes-related pathologies and explored the mechanism for the induction of these effects. We measured 30 environmental pollutants in plasma samples obtained from 147 participants in the Metabolic syndrome and Atherosclerosis in South Asians Living in America pilot study using a gas chromatography-tandem mass spectrometry analytical method that uses less than 0.5 mL of plasma. We found that plasma levels of o,p'-DDT and p,p'-DDT were independently associated with both body mass index (BMI) and waist circumference. Doubling the levels of the sums of these DDTs was associated with insulin insensitivity (-0.38 Matsuda index, p = 0.001), increased adiposity (1.26 kg/m2 BMI and 3.58 cm waist circumference increase, p < 0.0001), circulating insulin (12.9 mIU/L, p = 0.002), hepatic fat (-0.051 HU, p = 0.001), as well as increased odds of obesity (OR = 2.17, p < 0.001, BMI-based; OR = 2.37, p = 0.001, waist-based), prediabetes (OR = 1.55, p = 0.02), diabetes (OR = 1.72, p = 0.01), and fatty liver (OR = 1.66, p = 0.01) in multivariable models accounting for confounding by age, sex, years in the US, education, and fish protein. Furthermore, levels of DDTs were associated with increased hepatic fat and circulating insulin, independent of obesity and confounders. These findings suggest that exposure to DDTs may contribute to the risk of metabolic disease among Asian Indians by affecting hepatic fat levels independent of obesity.


Asunto(s)
Emigrantes e Inmigrantes , Contaminantes Ambientales , Animales , Europa (Continente) , Cromatografía de Gases y Espectrometría de Masas , Humanos , Proyectos Piloto , Estados Unidos
14.
World J Gastroenterol ; 30(4): 332-345, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38313232

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM: To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS: This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS: We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION: Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.


Asunto(s)
MicroARN Circulante , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Niño , Adolescente , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hígado/patología , MicroARN Circulante/genética , MicroARN Circulante/metabolismo , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Obesidad Mórbida/metabolismo , MicroARNs/metabolismo , Obesidad/complicaciones , Fibrosis , Inflamación/patología
15.
Sci Total Environ ; 930: 172840, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38685432

RESUMEN

Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Contaminantes Ambientales , Humanos , Adolescente , Masculino , Femenino , Estudios Longitudinales , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales/estadística & datos numéricos , Fluorocarburos/sangre , Obesidad Mórbida/cirugía , Obesidad Mórbida/sangre
16.
Obesity (Silver Spring) ; 32(5): 1023-1032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515392

RESUMEN

OBJECTIVE: Dichlorodiphenyldichloroethylene (DDE), an obesogen accumulating in adipose tissue, is released into circulation with weight loss, although its impact is underexplored among adolescents. We tested the association using an integrative translational approach of epidemiological analysis among adolescents with obesity and in vitro measures exploring the impact of DDE on adipogenesis via preadipocytes. METHODS: We included 63 participants from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort. We assessed 4,4'-DDE in visceral adipose tissue at surgery and BMI and waist circumference at surgery and 0.5, 1, 3, and 5 years after. We conducted longitudinal analysis to estimate the interaction on weight loss between DDE and time since surgery. In vitro analysis quantified adipogenic differentiation in commercial human preadipocytes exposed to 4,4'-DDE via fluorescent staining and imaging. RESULTS: A dose-response relationship was observed, with the low-exposure group having a greater reduction in BMI during the first year compared to higher-exposure groups and showing smaller regains compared to higher-exposure groups after the first year. In vitro analysis of preadipocytes treated with 4,4'-DDE during adipogenic differentiation for 12 days showed a concentration-dependent increase in lipid accumulation. CONCLUSIONS: DDE could contribute to weight trajectory among adolescents undergoing bariatric surgery, potentially mediated via promoted adipogenesis in preadipocytes.


Asunto(s)
Adipogénesis , Cirugía Bariátrica , Índice de Masa Corporal , Diclorodifenil Dicloroetileno , Grasa Intraabdominal , Pérdida de Peso , Humanos , Adolescente , Masculino , Femenino , Grasa Intraabdominal/metabolismo , Estudios Longitudinales , Obesidad Infantil/metabolismo , Adipocitos/metabolismo , Estudios de Cohortes , Circunferencia de la Cintura
17.
Endocrinology ; 164(3)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36683225

RESUMEN

Methylparaben (MP) and propylparaben (PP) are commonly used as food, cosmetic, and drug preservatives. These parabens are detected in the majority of US women and children, bind and activate estrogen receptors (ER), and stimulate mammary tumor cell growth and invasion in vitro. Hemizygous B6.FVB-Tg (MMTV-PyVT)634Mul/LellJ female mice (n = 20/treatment) were exposed to MP or PP at levels within the US Food and Drug Administration's "human acceptable daily intake." These paraben-exposed mice had increased mammary tumor volume compared with control mice (P < 0.001) and a 28% and 91% increase in the number of pulmonary metastases per week compared with the control mice, respectively (P < 0.0001). MP and PP caused differential expression of 288 and 412 mammary tumor genes, respectively (false discovery rate < 0.05), a subset of which has been associated with human breast cancer metastasis. Molecular docking and luciferase reporter studies affirmed that MP and PP bound and activated human ER, and RNA-sequencing revealed increased ER expression in mammary tumors among paraben-exposed mice. However, ER signaling was not enriched in mammary tumors. Instead, both parabens strongly impaired tumor RNA metabolism (eg, ribosome, spliceosome), as evident from enriched KEGG pathway analysis of differential mammary tumor gene expression common to both paraben treatments (MP, P < 0.001; PP, P < 0.01). Indeed, mammary tumors from PP-exposed mice had an increased retention of introns (P < 0.05). Our data suggest that parabens cause substantial mammary cancer metastasis in mice as a function of their increasing alkyl chain length and highlight the emerging role of aberrant spliceosome activity in breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Parabenos , Estados Unidos , Niño , Femenino , Ratones , Humanos , Animales , Parabenos/toxicidad , Simulación del Acoplamiento Molecular , Receptores de Estrógenos , ARN , Neoplasias de la Mama/inducido químicamente
18.
J Hazard Mater ; 429: 128243, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35093747

RESUMEN

Per- and poly-fluoroalkyl substances (PFASs) are used extensively in a broad range of industrial applications and consumer products. While a few legacy PFASs have been voluntarily phased out, over 5000 PFASs have been produced as replacements for their predecessors. The potential endocrine disrupting hazards of most emerging PFASs have not been comprehensively investigated. In silico molecular docking to the human androgen receptor (hAR) combined with machine learning techniques were previously applied to 5206 PFASs and predicted 23 PFASs bind the hAR. Herein, the in silico results were validated in vitro for the five candidate AR ligands that were commercially available. Three manufactured PFASs namely (9-(nonafluorobutyl)- 2,3,6,7-tetrahydro-1 H,5 H,11 H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one (NON), 2-(heptafluoropropyl)- 3-phenylquinoxaline (HEP), and 2,2,3,3,4,4,5,5,5-nonafluoro-N-(4-nitrophenyl)pentanamide (NNN) elicited significant antiandrogenic effects at relatively low concentrations. We further investigated the mechanism of AR inhibition and found that all three PFASs inhibited AR transactivation induced by testosterone through a competitive binding mechanism. We then examined the antiandrogenic effects of these PFASs on AR expression and its responsive genes. Consistently, these PFASs significantly decreased the expression of PSA and FKBP5 and increased the expression of AR, similar to the effects elicited by a known competitive AR inhibitor, hydroxyflutamide. This suggests they are competitive antagonists of AR activity and western blot analysis revealed these PFASs decreased intracellular AR protein in androgen sensitive human prostate cancer cells. Hence, the findings presented here corroborate our published in silico approach and indicate these emerging PFASs may adversely affect the human endocrine system.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/toxicidad , Disruptores Endocrinos/química , Disruptores Endocrinos/toxicidad , Humanos , Masculino , Simulación del Acoplamiento Molecular , Receptores Androgénicos/metabolismo
19.
Obes Rev ; 23 Suppl 1: e13383, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766696

RESUMEN

We conducted a systematic review and meta-analysis of the associations between prenatal exposure to persistent organic pollutants (POPs) and childhood obesity. We focused on organochlorines (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB], and polychlorinated biphenyls [PCBs]), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and polybrominated diphenyl ethers (PBDEs) that are the POPs more widely studied in environmental birth cohorts so far. We search two databases (PubMed and Embase) through July/09/2021 and identified 33 studies reporting associations with prenatal organochlorine exposure, 21 studies reporting associations with prenatal PFAS, and five studies reporting associations with prenatal PBDEs. We conducted a qualitative review. Additionally, we performed random-effects meta-analyses of POP exposures, with data estimates from at least three prospective studies, and BMI-z. Prenatal DDE and HCB levels were associated with higher BMI z-score in childhood (beta: 0.12, 95% CI: 0.03, 0.21; I2 : 28.1% per study-specific log increase of DDE and beta: 0.31, 95% CI: 0.09, 0.53; I2 : 31.9% per study-specific log increase of HCB). No significant associations between PCB-153, PFOA, PFOS, or pentaPBDEs with childhood BMI were found in meta-analyses. In individual studies, there was inconclusive evidence that POP levels were positively associated with other obesity indicators (e.g., waist circumference).


Asunto(s)
Contaminantes Ambientales , Obesidad Infantil , Bifenilos Policlorados , Efectos Tardíos de la Exposición Prenatal , Niño , Contaminantes Ambientales/efectos adversos , Femenino , Humanos , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados/efectos adversos , Embarazo , Estudios Prospectivos
20.
Environ Health Perspect ; 130(4): 46001, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35475652

RESUMEN

BACKGROUND: Experimental evidence indicates that exposure to certain pollutants is associated with liver damage. Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals widely used in industry and consumer products and bioaccumulate in food webs and human tissues, such as the liver. OBJECTIVE: The objective of this study was to conduct a systematic review of the literature and meta-analysis evaluating PFAS exposure and evidence of liver injury from rodent and epidemiological studies. METHODS: PubMed and Embase were searched for all studies from earliest available indexing year through 1 December 2021 using keywords corresponding to PFAS exposure and liver injury. For data synthesis, results were limited to studies in humans and rodents assessing the following indicators of liver injury: serum alanine aminotransferase (ALT), nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or steatosis. For human studies, at least three observational studies per PFAS were used to conduct a weighted z-score meta-analysis to determine the direction and significance of associations. For rodent studies, data were synthesized to qualitatively summarize the direction and significance of effect. RESULTS: Our search yielded 85 rodent studies and 24 epidemiological studies, primarily of people from the United States. Studies focused primarily on legacy PFAS: perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid. Meta-analyses of human studies revealed that higher ALT levels were associated with exposure to PFOA (z-score= 6.20, p<0.001), PFOS (z-score= 3.55, p<0.001), and PFNA (z-score= 2.27, p=0.023). PFOA exposure was also associated with higher aspartate aminotransferase and gamma-glutamyl transferase levels in humans. In rodents, PFAS exposures consistently resulted in higher ALT levels and steatosis. CONCLUSION: There is consistent evidence for PFAS hepatotoxicity from rodent studies, supported by associations of PFAS and markers of liver function in observational human studies. This review identifies a need for additional research evaluating next-generation PFAS, mixtures, and early life exposures. https://doi.org/10.1289/EHP10092.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores , Humanos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA