Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Cell Physiol ; 324(5): C1158-C1170, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067458

RESUMEN

In Caenorhabditis elegans, rhythmic posterior body wall muscle contractions mediate the highly regular defecation cycle. These contractions are regulated by inositol-1,4,5-trisphosphate (InsP3) receptor-dependent Ca2+ oscillations in intestinal epithelial cells. Here, we find that mutations in dec-7, which encodes the nematode ortholog of the human Sushi domain-containing 2 protein (SUSD2), lead to an increase in InsP3 receptor-dependent rhythmic posterior body wall muscle contractions. DEC-7 is highly expressed in the intestinal epithelia and localizes to the cell-cell junction. The increase in rhythmic activity caused by the loss of dec-7 is dependent on the innexin gap junction protein INX-16. Moreover, DEC-7 is required for the clustering of INX-16 to the cell-cell junction of the intestinal epithelia. We hypothesize that DEC-7/SUSD2 regulates INX-16 activity to mediate the rhythmic frequency of the defecation motor program. Thus, our data indicate a critical role of a phylogenetically conserved cell-cell junction protein in mediating an ultradian rhythm in the intestinal epithelia of C. elegans.NEW & NOTEWORTHY The conserved complement group protein DEC-7/SUSD2 acts at the apical cell-cell junction of C. elegans intestinal epithelia to mediate gap junction protein organization and function to facilitate a Ca2+ wave-regulated ultradian behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Ritmo Ultradiano , Animales , Humanos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Intestinos/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Conexinas/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
Aging Dis ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38607730

RESUMEN

Compromised lysosome function is implicated in the pathology of many neurodegenerative diseases, including Alzheimer's disease (AD). Familial Alzheimer's disease (fAD) is caused primarily by mutations in the presenilin encoding genes, but the underlying mechanism remains obscure. Loss of the conserved C. elegans presenilin orthologue SEL-12 results in increased mitochondrial calcium, which promotes neurodegeneration. Here, we find that sel-12 mutant lysosomes, independent of SEL-12 proteolytic activity, are significantly enlarged and more alkaline due to increased ER-to-mitochondrial calcium signaling and concomitant mitochondrial oxidative stress. These defects and their dependence on mitochondrial calcium are recapitulated in human fAD fibroblasts, demonstrating a conserved role for mitochondrial calcium in presenilin-mediated lysosome dysfunction. sel-12 mutants also have increased contact surface area between the ER, mitochondria, and lysosomes, suggesting sel-12 has an additional role in modulating organelle contact and communication. Overall, we demonstrate that SEL-12 maintains lysosome acidity and lysosome health by controlling ER-to-mitochondrial calcium signaling.

3.
Antioxidants (Basel) ; 11(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36139715

RESUMEN

Mitochondrial dysfunction and oxidative stress are major contributors to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms driving mitochondrial dysfunction and oxidative stress are unclear. Familial AD (fAD) is an early onset form of AD caused primarily by mutations in the presenilin-encoding genes. Previously, using Caenorhabditis elegans as a model system to study presenilin function, we found that loss of C. elegans presenilin orthologue SEL-12 results in elevated mitochondrial and cytosolic calcium levels. Here, we provide evidence that elevated neuronal mitochondrial generated reactive oxygen species (ROS) and subsequent neurodegeneration in sel-12 mutants are a consequence of the increase of mitochondrial calcium levels and not cytosolic calcium levels. We also identify mTORC1 signaling as a critical factor in sustaining high ROS in sel-12 mutants in part through its repression of the ROS scavenging system SKN-1/Nrf. Our study reveals that SEL-12/presenilin loss disrupts neuronal ROS homeostasis by increasing mitochondrial ROS generation and elevating mTORC1 signaling, which exacerbates this imbalance by suppressing SKN-1/Nrf antioxidant activity.

4.
Aging Cell ; 20(10): e13472, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499406

RESUMEN

Metabolic dysfunction and protein aggregation are common characteristics that occur in age-related neurodegenerative disease. However, the mechanisms underlying these abnormalities remain poorly understood. We have found that mutations in the gene encoding presenilin in Caenorhabditis elegans, sel-12, results in elevated mitochondrial activity that drives oxidative stress and neuronal dysfunction. Mutations in the human presenilin genes are the primary cause of familial Alzheimer's disease. Here, we demonstrate that loss of SEL-12/presenilin results in the hyperactivation of the mTORC1 pathway. This hyperactivation is caused by elevated mitochondrial calcium influx and, likely, the associated increase in mitochondrial activity. Reducing mTORC1 activity improves proteostasis defects and neurodegenerative phenotypes associated with loss of SEL-12 function. Consistent with high mTORC1 activity, we find that SEL-12 loss reduces autophagosome formation, and this reduction is prevented by limiting mitochondrial calcium uptake. Moreover, the improvements of proteostasis and neuronal defects in sel-12 mutants due to mTORC1 inhibition require the induction of autophagy. These results indicate that mTORC1 hyperactivation exacerbates the defects in proteostasis and neuronal function in sel-12 mutants and demonstrate a critical role of presenilin in promoting neuronal health.


Asunto(s)
Enfermedad de Alzheimer/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Calcio/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Presenilinas/metabolismo , Animales , Enfermedades Neurodegenerativas/patología , Transducción de Señal
5.
Aging Cell ; 19(1): e13065, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31714672

RESUMEN

Aging and age-related diseases are associated with a decline of protein homeostasis (proteostasis), but the mechanisms underlying this decline are not clear. In particular, decreased proteostasis is a widespread molecular feature of neurodegenerative diseases, such as Alzheimer's disease (AD). Familial AD is largely caused by mutations in the presenilin encoding genes; however, their role in AD is not understood. In this study, we investigate the role of presenilins in proteostasis using the model system Caenorhabditis elegans. Previously, we found that mutations in C. elegans presenilin cause elevated ER to mitochondria calcium signaling, which leads to an increase in mitochondrial generated oxidative stress. This, in turn, promotes neurodegeneration. To understand the cellular mechanisms driving neurodegeneration, using several molecular readouts of protein stability in C. elegans, we find that presenilin mutants have widespread defects in proteostasis. Markedly, we demonstrate that these defects are independent of the protease activity of presenilin and that reduction in ER to mitochondrial calcium signaling can significantly prevent the proteostasis defects observed in presenilin mutants. Furthermore, we show that supplementing presenilin mutants with antioxidants suppresses the proteostasis defects. Our findings indicate that defective ER to mitochondria calcium signaling promotes proteostatic collapse in presenilin mutants by increasing oxidative stress.


Asunto(s)
Calcio/metabolismo , Homeostasis/fisiología , Proteostasis/fisiología , Animales , Retículo Endoplásmico , Humanos
6.
Elife ; 72018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29989545

RESUMEN

Mitochondrial dysfunction and subsequent metabolic deregulation is observed in neurodegenerative diseases and aging. Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) cause most cases of familial Alzheimer's disease (AD); however, the underlying mechanism of pathogenesis remains unclear. Here, we show that mutations in the C. elegans gene encoding a PSEN homolog, sel-12 result in mitochondrial metabolic defects that promote neurodegeneration as a result of oxidative stress. In sel-12 mutants, elevated endoplasmic reticulum (ER)-mitochondrial Ca2+ signaling leads to an increase in mitochondrial Ca2+ content which stimulates mitochondrial respiration resulting in an increase in mitochondrial superoxide production. By reducing ER Ca2+ release, mitochondrial Ca2+ uptake or mitochondrial superoxides in sel-12 mutants, we demonstrate rescue of the mitochondrial metabolic defects and prevent neurodegeneration. These data suggest that mutations in PSEN alter mitochondrial metabolic function via ER to mitochondrial Ca2+ signaling and provide insight for alternative targets for treating neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/patología , Mutación , Enfermedades Neurodegenerativas/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Homeostasis , Humanos , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Presenilina-1/genética , Presenilina-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Piel/metabolismo , Piel/patología
7.
Genetics ; 202(3): 1153-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26801183

RESUMEN

Sleep is evolutionarily conserved and required for organism homeostasis and survival. Despite this importance, the molecular and cellular mechanisms underlying sleep are not well understood. Caenorhabditis elegans exhibits sleep-like behavioral quiescence and thus provides a valuable, simple model system for the study of cellular and molecular regulators of this process. In C. elegans, epidermal growth factor receptor (EGFR) signaling is required in the neurosecretory neuron ALA to promote sleep-like behavioral quiescence after cellular stress. We describe a novel role for VAV-1, a conserved guanine nucleotide exchange factor (GEF) for Rho-family GTPases, in regulation of sleep-like behavioral quiescence. VAV-1, in a GEF-dependent manner, acts in ALA to suppress locomotion and feeding during sleep-like behavioral quiescence in response to cellular stress. Additionally, VAV-1 activity is required for EGF-induced sleep-like quiescence and normal levels of EGFR and secretory dense core vesicles in ALA. Importantly, the role of VAV-1 in promoting cellular stress-induced behavioral quiescence is vital for organism health because VAV-1 is required for normal survival after cellular stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Proteínas Proto-Oncogénicas c-vav/fisiología , Transducción de Señal , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Factor de Crecimiento Epidérmico/fisiología , Receptores ErbB/fisiología , Conducta Alimentaria/fisiología , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas c-vav/genética , Estrés Fisiológico
8.
Nat Commun ; 5: 5579, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25412913

RESUMEN

The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Interneuronas/metabolismo , Locomoción/fisiología , Actividad Motora/fisiología , Proteínas Proto-Oncogénicas c-vav/genética , Aldicarb/farmacología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/biosíntesis , Agonistas Colinérgicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Antagonistas del GABA/farmacología , Levamisol/farmacología , Locomoción/genética , Actividad Motora/genética , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Parálisis/inducido químicamente , Pentilenotetrazol/farmacología , Proteínas Proto-Oncogénicas c-vav/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Receptores Colinérgicos , Factores de Intercambio de Guanina Nucleótido Rho , Rodopsina/biosíntesis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA