Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 103(6): 893-906, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526866

RESUMEN

Learning the transmission history of alleles through a family or population plays an important role in evolutionary, demographic, and medical genetic studies. Most classical models of population genetics have attempted to do so under the assumption that the genealogy of a population is unavailable and that its idiosyncrasies can be described by a small number of parameters describing population size and mate choice dynamics. Large genetic samples have increased sensitivity to such modeling assumptions, and large-scale genealogical datasets become a useful tool to investigate realistic genealogies. However, analyses in such large datasets are often intractable using conventional methods. We present an efficient method to infer transmission paths of rare alleles through population-scale genealogies. Based on backward-time Monte Carlo simulations of genetic inheritance, we use an importance sampling scheme to dramatically speed up convergence. The approach can take advantage of available genotypes of subsets of individuals in the genealogy including haplotype structure as well as information about the mode of inheritance and general prevalence of a mutation or disease in the population. Using a high-quality genealogical dataset of more than three million married individuals in the Quebec founder population, we apply the method to reconstruct the transmission history of chronic atrial and intestinal dysrhythmia (CAID), a rare recessive disease. We identify the most likely early carriers of the mutation and geographically map the expected carrier rate in the present-day French-Canadian population of Quebec.


Asunto(s)
Grupos de Población/genética , Enfermedades Raras/genética , Alelos , Evolución Biológica , Bases de Datos Genéticas , Femenino , Genética de Población/métodos , Haplotipos/genética , Humanos , Masculino , Mutación/genética , Linaje , Quebec , Testamentos
2.
Am J Phys Anthropol ; 171(4): 645-658, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32064591

RESUMEN

OBJECTIVES: We describe a method to identify human remains excavated from unmarked graves in historical Québec cemeteries by combining parental-lineage genetic markers with the whole-population genealogy of Québec contained in the BALSAC database. MATERIALS AND METHODS: The remains of six men were exhumed from four historical cemeteries in the province of Québec, Canada. DNA was extracted from the remains and genotyped to reveal their mitochondrial and Y-chromosome haplotypes, which were compared to a collection of haplotypes of genealogically-anchored modern volunteers. Maternal and paternal genealogies were searched in the BALSAC genealogical record for parental couples matching the mitochondrial and the Y-chromosome haplotypic signatures, to identify candidate sons from whom the remains could have originated. RESULTS: Analysis of the matching genealogies identified the parents of one man inhumed in the cemetery of the investigated parish during its operating time. The candidate individual died in 1833 at the age of 58, a plausible age at death in light of osteological analysis of the remains. DISCUSSION: This study demonstrates the promising potential of coupling genetic information from living individuals to genealogical data in BALSAC to identify historical human remains. If genetic coverage is increased, the genealogical information in BALSAC could enable the identification of 87% of the men (n = 178,435) married in Québec before 1850, with high discriminatory power in most cases since >75% of the parental couples have unique biparental signatures in most regions. Genotyping and identifying Québec's historical human remains are a key to reconstructing the genomes of the founders of Québec and reinhuming archeological remains with a marked grave.


Asunto(s)
Antropología Física/métodos , Marcadores Genéticos , Herencia Materna , Herencia Paterna , Adulto , Restos Mortales , Humanos , Masculino , Persona de Mediana Edad , Quebec , Adulto Joven
3.
Hum Mutat ; 40(8): 1084-1100, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31228227

RESUMEN

Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease-causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice-site mutation c.494-1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372-2G>A, and c.234+1G>A present in cis with c.564-98T>C and c.710C>A rare single-nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease-causing variants, and reveal the evolutionary history of MPSIIIC.


Asunto(s)
Acetiltransferasas/genética , Mucopolisacaridosis III/genética , Mutación , Acetiltransferasas/química , Argelia , Animales , Azerbaiyán , Brasil , Células COS , Canadá , Chlorocebus aethiops , Colombia , Evolución Molecular , Femenino , Efecto Fundador , Haplotipos , Humanos , Irán , Masculino , Países Bajos , Linaje , Filogeografía , Polonia , Pliegue de Proteína
4.
Am J Hum Genet ; 97(5): 744-53, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26477546

RESUMEN

Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.


Asunto(s)
Cerebelo/anomalías , Cilios/patología , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Retina/anomalías , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adolescente , Adulto , Canadá/epidemiología , Cerebelo/patología , Niño , Preescolar , Cilios/metabolismo , Exoma/genética , Anomalías del Ojo/epidemiología , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Recién Nacido , Enfermedades Renales Quísticas/epidemiología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Masculino , Linaje , Pronóstico , Retina/patología , Adulto Joven
5.
Proc Biol Sci ; 284(1867)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29167359

RESUMEN

It is unclear whether Indo-European languages in Europe spread from the Pontic steppes in the late Neolithic, or from Anatolia in the Early Neolithic. Under the former hypothesis, people of the Globular Amphorae culture (GAC) would be descended from Eastern ancestors, likely representing the Yamnaya culture. However, nuclear (six individuals typed for 597 573 SNPs) and mitochondrial (11 complete sequences) DNA from the GAC appear closer to those of earlier Neolithic groups than to the DNA of all other populations related to the Pontic steppe migration. Explicit comparisons of alternative demographic models via approximate Bayesian computation confirmed this pattern. These results are not in contrast to Late Neolithic gene flow from the Pontic steppes into Central Europe. However, they add nuance to this model, showing that the eastern affinities of the GAC in the archaeological record reflect cultural influences from other groups from the East, rather than the movement of people.


Asunto(s)
Variación Genética , Genoma Humano , Migración Humana/historia , Lenguaje/historia , Arqueología , Teorema de Bayes , Núcleo Celular/genética , ADN Antiguo/análisis , ADN Mitocondrial/genética , Europa (Continente) , Historia Antigua , Humanos
6.
Hum Biol ; 88(4): 251-263, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28826319

RESUMEN

This study presents genetic data for nine Native American populations from northern North America. Analyses of genetic variation focus on the Pacific Northwest (PNW). Using mitochondrial, Y chromosomal, and autosomal DNA variants, we aimed to more closely address the relationships of geography and language with present genetic diversity among the regional PNW Native American populations. Patterns of genetic diversity exhibited by the three genetic systems were consistent with our hypotheses: genetic variation was more strongly explained by geographic proximity than by linguistic structure. Our findings were corroborated through a variety on analytic approaches, with the unrooted trees for the three genetic systems consistently separating inland from coastal PNW populations. Furthermore, analyses of molecular variance support the trends exhibited by the unrooted trees, with geographic partitioning of PNW populations (FCT = 19.43%, p = 0.010 ± 0.009) accounting for over twice as much of the observed genetic variation as linguistic partitioning of the same populations (FCT = 9.15%, p = 0.193 ± 0.013). These findings demonstrate a consensus with previous PNW population studies examining the relationships of genome-wide variation, mitochondrial haplogroup frequencies, and skeletal morphology with geography and language.


Asunto(s)
Genética de Población , Indígenas Norteamericanos/genética , Filogenia , Cromosomas Humanos Y , Análisis por Conglomerados , ADN Mitocondrial/genética , Emigración e Inmigración , Variación Genética , Geografía , Humanos , Lingüística , Noroeste de Estados Unidos , Análisis de Secuencia de ADN
7.
J Med Genet ; 52(5): 303-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25650066

RESUMEN

BACKGROUND: The heterogeneous group of 3-methylglutaconic aciduria disorders includes several inborn errors of metabolism that affect mitochondrial function through poorly understood mechanisms. We describe four newborn siblings, from a consanguineous family, who showed microcephaly, small birth weight, severe encephalopathy and 3-methylglutaconic aciduria. Their neurological examination was characterised by severe hypertonia and the induction of prolonged clonic movements of the four limbs upon minimal tactile stimulation. METHODS AND RESULTS: Using homozygosity mapping and exome sequencing, we identified a homozygous truncating mutation (p.I562Tfs*23) in CLPB segregating with the disease in this family. CLPB codes for a member of the family of ATPases associated with various cellular activities (AAA(+) proteins) whose function remains unknown. We found that CLPB expression is abolished in fibroblasts from the patients. To investigate the function of this gene, we interfered with the translation of the zebrafish clpb orthologue using an antisense morpholino. The clpb morphants showed an abnormal touch-evoked response with increased swim velocity and tail beat frequency. This motor phenotype is reminiscent of that observed in the patients and is suggestive of increased excitability in neuronal circuits. Interestingly, knocking down clpb reduced the number of inhibitory glycinergic interneurons and increased a population of excitatory glutamatergic neurons in the spinal cord. CONCLUSIONS: Altogether, our study suggests that disruption of CLPB causes a novel form of neonatal encephalopathy associated with 3-methylglutaconic aciduria.


Asunto(s)
Encefalopatías/genética , Endopeptidasa Clp/genética , Estudios de Asociación Genética , Errores Innatos del Metabolismo/genética , Microcefalia/genética , Animales , Encefalopatías/diagnóstico , Mapeo Cromosómico , Consanguinidad , Análisis Mutacional de ADN , Exoma , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Recién Nacido , Errores Innatos del Metabolismo/diagnóstico , Microcefalia/diagnóstico , Mutación , Linaje , Fenotipo , Hermanos , Pez Cebra
8.
Proc Natl Acad Sci U S A ; 110(35): 14308-13, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940335

RESUMEN

In this study we evaluated migration models to the Americas by using the information contained in native mitochondrial genomes (mitogenomes) from North America. Molecular and phylogeographic analyses of B2a mitogenomes, which are absent in Eskimo-Aleut and northern Na-Dene speakers, revealed that this haplogroup arose in North America ∼11-13 ka from one of the founder Paleo-Indian B2 mitogenomes. In contrast, haplogroup A2a, which is typical of Eskimo-Aleuts and Na-Dene, but also present in the easternmost Siberian groups, originated only 4-7 ka in Alaska, led to the first Paleo-Eskimo settlement of northern Canada and Greenland, and contributed to the formation of the Na-Dene gene pool. However, mitogenomes also show that Amerindians from northern North America, without any distinction between Na-Dene and non-Na-Dene, were heavily affected by an additional and distinctive Beringian genetic input. In conclusion, most mtDNA variation (along the double-continent) stems from the first wave from Beringia, which followed the Pacific coastal route. This was accompanied or followed by a second inland migratory event, marked by haplogroups X2a and C4c, which affected all Amerindian groups of Northern North America. Much later, the ancestral A2a carriers spread from Alaska, undertaking both a westward migration to Asia and an eastward expansion into the circumpolar regions of Canada. Thus, the first American founders left the greatest genetic mark but the original maternal makeup of North American Natives was subsequently reshaped by additional streams of gene flow and local population dynamics, making a three-wave view too simplistic.


Asunto(s)
Emigración e Inmigración , Migración Humana , Indígenas Norteamericanos/genética , Genoma Humano , Humanos
9.
BMC Bioinformatics ; 16: 160, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25971991

RESUMEN

BACKGROUND: Founder populations have an important role in the study of genetic diseases. Access to detailed genealogical records is often one of their advantages. These genealogical data provide unique information for researchers in evolutionary and population genetics, demography and genetic epidemiology. However, analyzing large genealogical datasets requires specialized methods and software. The GENLIB software was developed to study the large genealogies of the French Canadian population of Quebec, Canada. These genealogies are accessible through the BALSAC database, which contains over 3 million records covering the whole province of Quebec over four centuries. Using this resource, extended pedigrees of up to 17 generations can be constructed from a sample of present-day individuals. RESULTS: We have extended and implemented GENLIB as a package in the R environment for statistical computing and graphics, thus allowing optimal flexibility for users. The GENLIB package includes basic functions to manage genealogical data allowing, for example, extraction of a part of a genealogy or selection of specific individuals. There are also many functions providing information to describe the size and complexity of genealogies as well as functions to compute standard measures such as kinship, inbreeding and genetic contribution. GENLIB also includes functions for gene-dropping simulations. The goal of this paper is to present the full functionalities of GENLIB. We used a sample of 140 individuals from the province of Quebec (Canada) to demonstrate GENLIB's functions. Ascending genealogies for these individuals were reconstructed using BALSAC, yielding a large pedigree of 41,523 individuals. Using GENLIB's functions, we provide a detailed description of these genealogical data in terms of completeness, genetic contribution of founders, relatedness, inbreeding and the overall complexity of the genealogical tree. We also present gene-dropping simulations based on the whole genealogy to investigate identical-by-descent sharing of alleles and chromosomal segments of different lengths and estimate probabilities of identical-by-descent sharing. CONCLUSIONS: The R package GENLIB provides a user friendly and flexible environment to analyze extensive genealogical data, allowing an efficient and easy integration of different types of data, analytical methods and additional developments and making this tool ideal for genealogical analysis.


Asunto(s)
Evolución Biológica , Genealogía y Heráldica , Genética de Población/métodos , Programas Informáticos , Alelos , Bases de Datos Factuales , Demografía , Humanos , Epidemiología Molecular , Linaje , Grupos de Población , Quebec/epidemiología
10.
Am J Hum Genet ; 90(4): 693-700, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22425360

RESUMEN

Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.


Asunto(s)
Enfermedades Cerebelosas/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Proteínas de la Membrana/genética , Mutación , Anomalías Múltiples , Adulto , Secuencia de Bases , Canadá , Cerebelo/anomalías , Niño , Preescolar , Exoma , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Retina/anomalías
11.
Am J Hum Genet ; 86(3): 353-63, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20188344

RESUMEN

Was the past genetic contribution of women and men to the current human population equal? Was polygyny (excess of breeding women) present among hominid lineages? We addressed these questions by measuring the ratio of population recombination rates between the X chromosome and the autosomes, rho(X)/rho(A). The X chromosome recombines only in female meiosis, whereas autosomes undergo crossovers in both sexes; thus, rho(X)/rho(A) reflects the female-to-male breeding ratio, beta. We estimated beta from rho(X)/rho(A) inferred from genomic diversity data and calibrated with recombination rates derived from pedigree data. For the HapMap populations, we obtained beta of 1.4 in the Yoruba from West Africa, 1.3 in Europeans, and 1.1 in East Asian samples. These values are consistent with a high prevalence of monogamy and limited polygyny in human populations. More mutations occur during male meiosis as compared to female meiosis at the rate ratio referred to as alpha. We show that at alpha not equal 1, the divergence rates and genetic diversities of the X chromosome relative to the autosomes are complex functions of both alpha and beta, making their independent estimation difficult. Because our estimator of beta does not require any knowledge of the mutation rates, our approach should allow us to dissociate the effects of alpha and beta on the genetic diversity and divergence rate ratios of the sex chromosomes to the autosomes.


Asunto(s)
Evolución Biológica , Genética de Población , Recombinación Genética , Animales , Cromosomas Humanos/genética , Cromosomas Humanos X/genética , Bases de Datos Genéticas , Femenino , Variación Genética , Historia Antigua , Humanos , Masculino , Matrimonio/historia , Modelos Genéticos , Filogenia , Razón de Masculinidad
12.
Am J Hum Genet ; 87(3): 341-53, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20817138

RESUMEN

Nonrecombining Y-chromosomal microsatellites (Y-STRs) are widely used to infer population histories, discover genealogical relationships, and identify males for criminal justice purposes. Although a key requirement for their application is reliable mutability knowledge, empirical data are only available for a small number of Y-STRs thus far. To rectify this, we analyzed a large number of 186 Y-STR markers in nearly 2000 DNA-confirmed father-son pairs, covering an overall number of 352,999 meiotic transfers. Following confirmation by DNA sequence analysis, the retrieved mutation data were modeled via a Bayesian approach, resulting in mutation rates from 3.78 × 10(-4) (95% credible interval [CI], 1.38 × 10(-5) - 2.02 × 10(-3)) to 7.44 × 10(-2) (95% CI, 6.51 × 10(-2) - 9.09 × 10(-2)) per marker per generation. With the 924 mutations at 120 Y-STR markers, a nonsignificant excess of repeat losses versus gains (1.16:1), as well as a strong and significant excess of single-repeat versus multirepeat changes (25.23:1), was observed. Although the total repeat number influenced Y-STR locus mutability most strongly, repeat complexity, the length in base pairs of the repeated motif, and the father's age also contributed to Y-STR mutability. To exemplify how to practically utilize this knowledge, we analyzed the 13 most mutable Y-STRs in an independent sample set and empirically proved their suitability for distinguishing close and distantly related males. This finding is expected to revolutionize Y-chromosomal applications in forensic biology, from previous male lineage differentiation toward future male individual identification.


Asunto(s)
Cromosomas Humanos Y/genética , Ciencias Forenses/métodos , Repeticiones de Microsatélite/genética , Mutación/genética , Sitios Genéticos/genética , Marcadores Genéticos , Humanos , Masculino , Edad Paterna
13.
J Med Genet ; 49(10): 636-41, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23012439

RESUMEN

BACKGROUND: Joubert syndrome (JBTS) is a predominantly autosomal recessive disorder characterised by a distinctive midhindbrain malformation, oculomotor apraxia, breathing abnormalities and developmental delay. JBTS is genetically heterogeneous, involving genes required for formation and function of non-motile cilia. Here we investigate the genetic basis of JBTS in 12 French-Canadian (FC) individuals. METHODS AND RESULTS: Exome sequencing in all subjects showed that six of them carried rare compound heterozygous mutations in CC2D2A or C5ORF42, known JBTS genes. In addition, three individuals (two families) were compound heterozygous for the same rare mutations in TMEM231(c.12T>A[p.Tyr4*]; c.625G>A[p.Asp209Asn]). All three subjects showed a severe neurological phenotype and variable presence of polydactyly, retinopathy and renal cysts. These mutations were not detected among 385 FC controls. TMEM231 has been previously shown to localise to the ciliary transition zone, and to interact with several JBTS gene products in a complex involved in the formation of the diffusion barrier between the cilia and plasma membrane. siRNA knockdown of TMEM231 was also shown to affect barrier integrity, resulting in a reduction of cilia formation and ciliary localisation of signalling receptors. CONCLUSIONS: Our data suggest that mutations in TMEM231 cause JBTS, reinforcing the relationship between this condition and the disruption of the barrier at the ciliary transition zone.


Asunto(s)
Enfermedades Cerebelosas/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Proteínas de la Membrana/genética , Mutación , Anomalías Múltiples , Adolescente , Adulto , Secuencia de Aminoácidos , Encéfalo/patología , Canadá/etnología , Enfermedades Cerebelosas/diagnóstico , Cerebelo/anomalías , Niño , Preescolar , Exoma , Anomalías del Ojo/diagnóstico , Femenino , Orden Génico , Humanos , Lactante , Enfermedades Renales Quísticas/diagnóstico , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Retina/anomalías , Alineación de Secuencia , Adulto Joven
14.
Mol Biol Evol ; 28(7): 1957-62, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21266489

RESUMEN

Recent work on the Neandertal genome has raised the possibility of admixture between Neandertals and the expanding population of Homo sapiens who left Africa between 80 and 50 Kya (thousand years ago) to colonize the rest of the world. Here, we provide evidence of a notable presence (9% overall) of a Neandertal-derived X chromosome segment among all contemporary human populations outside Africa. Our analysis of 6,092 X-chromosomes from all inhabited continents supports earlier contentions that a mosaic of lineages of different time depths and different geographic provenance could have contributed to the genetic constitution of modern humans. It indicates a very early admixture between expanding African migrants and Neandertals prior to or very early on the route of the out-of-Africa expansion that led to the successful colonization of the planet.


Asunto(s)
Evolución Molecular , Genes Ligados a X , Variación Genética , Hominidae/genética , Grupos Raciales/genética , África , Animales , Secuencia de Bases , Emigración e Inmigración , Frecuencia de los Genes , Haplotipos , Humanos , Datos de Secuencia Molecular
15.
PLoS One ; 17(5): e0266079, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507549

RESUMEN

Population history reconstruction, using extant genetic diversity data, routinely relies on simple demographic models to project the past through ascending genealogical-tree branches. Because genealogy and genetics are intimately related, we traced descending genealogies of the Québec founders to pursue their fate and to assess their contribution to the present-day population. Focusing on the female and male founder lines, we observed important sex-biased immigration in the early colony years and documented a remarkable impact of these early immigrants on the genetic make-up of 20th-century Québec. We estimated the immigrants' survival ratio as a proportion of lineages found in the 1931-60 Québec to their number introduced within the immigration period. We assessed the effective family size, EFS, of all immigrant parents and their Québec-born descendants. The survival ratio of the earliest immigrants was the highest and declined over centuries in association with the immigrants' EFS. Parents with high EFS left plentiful married descendants, putting EFS as the most important variable determining the parental demographic success throughout time for generations ahead. EFS of immigrant founders appears to predict their long-term demographic and, consequently, their genetic outcome. Genealogically inferred immigrants' "autosomal" genetic contribution to 1931-60 Québec from consecutive immigration periods follow the same yearly pattern as the corresponding maternal and paternal lines. Québec genealogical data offer much broader information on the ancestral diversity distribution than genetic scrutiny of a limited population sample. Genealogically inferred population history could assist studies of evolutionary factors shaping population structure and provide tools to target specific health interventions.


Asunto(s)
Emigrantes e Inmigrantes , Emigración e Inmigración , Composición Familiar , Femenino , Humanos , Masculino , Linaje , Quebec/epidemiología
16.
Ann Hum Genet ; 75(2): 247-54, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21058944

RESUMEN

Data from uniparentally inherited genetic systems were used to trace evolution of human populations. Reconstruction of the past primarily relies on variation in present-day populations, limiting historical inference to lineages that are found among living subjects. Our analysis of four population groups in the Gaspé Peninsula, demonstrates how this may occasionally lead to erroneous interpretations. Mitochondrial DNA analysis of Gaspesians revealed an important admixture with Native Americans. The most likely scenario links this admixture to French-Canadians from the St. Lawrence Valley who moved to Gaspesia in the 19th century. However, in contrast to genetic data, analysis of genealogical record shows that Native American maternal lineages were brought to Gaspesia in the 18th century by Acadians who settled on the south-western coast of the peninsula. Intriguingly, within three generations, virtually all Métis Acadian families separated from their nonadmixed relatives and moved eastward mixing in with other Gaspesian groups, in which Native American maternal lines are present in relatively high frequencies. Over time, the carriers of these lines eventually lost memory of their mixed Amerindian-Acadian origin. Our results show that a reliable reconstruction of population history requires cross-verification of different data sources for consistency, thus favouring multidisciplinary approaches.


Asunto(s)
Genealogía y Heráldica , Genética de Población , ADN Mitocondrial , Emigración e Inmigración , Francia/etnología , Humanos , Indígenas Norteamericanos/genética , Nueva Escocia/etnología , Quebec/etnología
17.
Hum Genet ; 129(5): 521-31, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21234765

RESUMEN

Characterizing the genetic structure of worldwide populations is important for understanding human history and is essential to the design and analysis of genetic epidemiological studies. In this study, we examined genetic structure and distant relatedness and their effect on the extent of linkage disequilibrium (LD) and homozygosity in the founder population of Quebec (Canada). In the French Canadian founder population, such analysis can be performed using both genomic and genealogical data. We investigated genetic differences, extent of LD, and homozygosity in 140 individuals from seven sub-populations of Quebec characterized by different demographic histories reflecting complex founder events. Genetic findings from genome-wide single nucleotide polymorphism data were correlated with genealogical information on each of these sub-populations. Our genomic data showed significant population structure and relatedness present in the contemporary Quebec population, also reflected in LD and homozygosity levels. Our extended genealogical data corroborated these findings and indicated that this structure is consistent with the settlement patterns involving several founder events. This provides an independent and complementary validation of genomic-based studies of population structure. Combined genomic and genealogical data in the Quebec founder population provide insights into the effects of the interplay of two important sources of bias in genetic epidemiological studies, unrecognized genetic structure and cryptic relatedness.


Asunto(s)
Efecto Fundador , Genealogía y Heráldica , Genómica , Dinámica Poblacional , Francia/etnología , Humanos , Desequilibrio de Ligamiento/genética , Epidemiología Molecular , Polimorfismo de Nucleótido Simple , Quebec/epidemiología
18.
Am J Phys Anthropol ; 144(3): 432-41, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21302269

RESUMEN

Population stratification results from unequal, nonrandom genetic contribution of ancestors and should be reflected in the underlying genealogies. In Quebec, the distribution of Mendelian diseases points to local founder effects suggesting stratification of the contemporary French Canadian gene pool. Here we characterize the population structure through the analysis of the genetic contribution of 7,798 immigrant founders identified in the genealogies of 2,221 subjects partitioned in eight regions. In all but one region, about 90% of gene pools were contributed by early French founders. In the eastern region where this contribution was 76%, we observed higher contributions of Acadians, British and American Loyalists. To detect population stratification from genealogical data, we propose an approach based on principal component analysis (PCA) of immigrant founders' genetic contributions. This analysis was compared with a multidimensional scaling of pairwise kinship coefficients. Both methods showed evidence of a distinct identity of the northeastern and eastern regions and stratification of the regional populations correlated with geographical location along the St-Lawrence River. In addition, we observed a West-East decreasing gradient of diversity. Analysis of PC-correlated founders illustrates the differential impact of early versus latter founders consistent with specific regional genetic patterns. These results highlight the importance of considering the geographic origin of samples in the design of genetic epidemiology studies conducted in Quebec. Moreover, our results demonstrate that the study of deep ascending genealogies can accurately reveal population structure.


Asunto(s)
Emigrantes e Inmigrantes , Genealogía y Heráldica , Dinámica Poblacional , Análisis de Varianza , Efecto Fundador , Humanos , Matrimonio , Análisis de Componente Principal , Quebec
19.
BMC Bioinformatics ; 11: 65, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20109229

RESUMEN

BACKGROUND: Natural selection eliminates detrimental and favors advantageous phenotypes. This process leaves characteristic signatures in underlying genomic segments that can be recognized through deviations in allelic or haplotypic frequency spectra. To provide an identifiable signature of recent positive selection that can be detected by comparison with the background distribution, we introduced a new way of looking at genomic polymorphisms: haplotype allelic classes. RESULTS: The model combines segregating sites and haplotypic information in order to reveal useful data characteristics. We developed a summary statistic, Svd, to compare the distribution of the haplotypes carrying the selected allele with the distribution of the remaining ones. Coalescence simulations are used to study the distributions under standard population models assuming neutrality, demographic scenarios and selection models. To test, in practice, haplotype allelic class performance and the derived statistic in capturing deviation from neutrality due to positive selection, we analyzed haplotypic variation in detail in the locus of lactase persistence in the three HapMap Phase II populations. CONCLUSIONS: We showed that the Svd statistic is less sensitive than other tests to confounding factors such as demography or recombination. Our approach succeeds in identifying candidate loci, such as the lactase-persistence locus, as targets of strong positive selection and provides a new tool complementary to other tests to study natural selection in genomic data.


Asunto(s)
Alelos , Haplotipos , Genética de Población , Genoma Humano , Genotipo , Humanos , Polimorfismo Genético , Selección Genética
20.
Ann Hum Genet ; 74(6): 525-38, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20887376

RESUMEN

We report an integrated analysis of nuclear (autosomal, X- and Y-chromosome) short tandem repeat (STR) data and mtDNA D-loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with "least cost distances," which consider the coasts as facilitators of migration. Continent-wide estimates of population structure are highest for the Y-chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation-drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non-Andean South Americans and at a contrasting demographic history for populations from these regions.


Asunto(s)
ADN Mitocondrial/genética , Emigración e Inmigración , Indígenas Norteamericanos/genética , Indígenas Sudamericanos/genética , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Femenino , Humanos , Masculino , Repeticiones de Microsatélite , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA