Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Org Chem ; 85(3): 1466-1475, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31660743

RESUMEN

The Myc transcription factor represents an "undruggable" target of high biological interest due to its central role in various cancers. An abbreviated form of the c-Myc protein, called Omomyc, consists of the Myc DNA-binding domain and a coiled-coil region to facilitate dimerization of the 90 amino acid polypeptide. Here we present our results to evaluate the synthesis of Omomyc using three complementary strategies: linear Fmoc solid-phase peptide synthesis (SPPS) using several advancements for difficult sequences, native chemical ligation from smaller peptide fragments, and a high-throughput bacterial expression and assay platform for rapid mutagenesis. This multifaceted approach allowed access to up to gram quantities of the mini-protein and permitted in vitro and in vivo SAR exploration of this modality. DNA-binding results and cellular activity confirm that Omomyc and analogues presented here, are potent binders of the E-box DNA engaged by Myc for transcriptional activation and that this 90-amino acid mini-protein is cell permeable and can inhibit proliferation of Myc-dependent cell lines. We also present additional results on covalent homodimerization through disulfide formation of the full-length mini-protein and show the coiled-coil region can be truncated while preserving both DNA binding and cellular activity. Altogether, our results highlight the ability of advanced peptide synthesis to achieve SAR tractability in a challenging synthetic modality.


Asunto(s)
ADN , Proteínas Proto-Oncogénicas c-myc , Línea Celular , ADN/metabolismo , Fragmentos de Péptidos , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Proc Natl Acad Sci U S A ; 107(51): 22002-7, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21135211

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes nosocomial infections for which there are limited treatment options. Penicillin-binding protein PBP3, a key therapeutic target, is an essential enzyme responsible for the final steps of peptidoglycan synthesis and is covalently inactivated by ß-lactam antibiotics. Here we disclose the first high resolution cocrystal structures of the P. aeruginosa PBP3 with both novel and marketed ß-lactams. These structures reveal a conformational rearrangement of Tyr532 and Phe533 and a ligand-induced conformational change of Tyr409 and Arg489. The well-known affinity of the monobactam aztreonam for P. aeruginosa PBP3 is due to a distinct hydrophobic aromatic wall composed of Tyr503, Tyr532, and Phe533 interacting with the gem-dimethyl group. The structure of MC-1, a new siderophore-conjugated monocarbam complexed with PBP3 provides molecular insights for lead optimization. Importantly, we have identified a novel conformation that is distinct to the high-molecular-weight class B PBP subfamily, which is identifiable by common features such as a hydrophobic aromatic wall formed by Tyr503, Tyr532, and Phe533 and the structural flexibility of Tyr409 flanked by two glycine residues. This is also the first example of a siderophore-conjugated triazolone-linked monocarbam complexed with any PBP. Energetic analysis of tightly and loosely held computed hydration sites indicates protein desolvation effects contribute significantly to PBP3 binding, and analysis of hydration site energies allows rank ordering of the second-order acylation rate constants. Taken together, these structural, biochemical, and computational studies provide a molecular basis for recognition of P. aeruginosa PBP3 and open avenues for future design of inhibitors of this class of PBPs.


Asunto(s)
Antibacterianos/química , Modelos Moleculares , Proteínas de Unión a las Penicilinas/química , Pseudomonas aeruginosa/química , Sideróforos/química , beta-Lactamas/química , Aminoácidos Aromáticos , Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Cristalografía por Rayos X , Humanos , Estructura Terciaria de Proteína , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , beta-Lactamas/uso terapéutico
3.
Antimicrob Agents Chemother ; 56(12): 6334-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23027195

RESUMEN

The incidence of hospital-acquired infections with multidrug-resistant (MDR) Gram-negative pathogens is increasing at an alarming rate. Equally alarming is the overall lack of efficacious therapeutic options for clinicians, which is due primarily to the acquisition and development of various antibiotic resistance mechanisms that render these drugs ineffective. Among these mechanisms is the reduced permeability of the outer membrane, which prevents many marketed antibiotics from traversing this barrier. To circumvent this, recent drug discovery efforts have focused on conjugating a siderophore moiety to a pharmacologically active compound that has been designed to hijack the bacterial siderophore transport system and trick cells into importing the active drug by recognizing it as a nutritionally beneficial compound. MC-1, a novel siderophore-conjugated ß-lactam that promotes its own uptake into bacteria, has exquisite activity against many Gram-negative pathogens. While the inclusion of the siderophore was originally designed to facilitate outer membrane penetration into Gram-negative cells, here we show that this structural moiety also renders other clinically relevant antibiotic resistance mechanisms unable to affect MC-1 efficacy. Resistance frequency determinations and subsequent characterization of first-step resistant mutants identified PiuA, a TonB-dependent outer membrane siderophore receptor, as the primary means of MC-1 entry into Pseudomonas aeruginosa. While the MICs of these mutants were increased 32-fold relative to the parental strain in vitro, we show that this resistance phenotype is not relevant in vivo, as alternative siderophore-mediated uptake mechanisms compensated for the loss of PiuA under iron-limiting conditions.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/fisiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , beta-Lactamas/farmacología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Western Blotting , Clonación Molecular , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Biblioteca de Genes , Ratones , Porinas/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Sideróforos , beta-Lactamasas/biosíntesis , beta-Lactamasas/genética
4.
Antimicrob Agents Chemother ; 56(11): 5687-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22908165

RESUMEN

Acinetobacter baumannii is an increasingly problematic pathogen in United States hospitals. Antibiotics that can treat A. baumannii are becoming more limited. Little is known about the contributions of penicillin binding proteins (PBPs), the target of ß-lactam antibiotics, to ß-lactam-sulbactam susceptibility and ß-lactam resistance in A. baumannii. Decreased expression of PBPs as well as loss of binding of ß-lactams to PBPs was previously shown to promote ß-lactam resistance in A. baumannii. Using an in vitro assay with a reporter ß-lactam, Bocillin, we determined that the 50% inhibitory concentrations (IC(50)s) for PBP1a from A. baumannii and PBP3 from Acinetobacter sp. ranged from 1 to 5 µM for a series of ß-lactams. In contrast, PBP3 demonstrated a narrower range of IC(50)s against ß-lactamase inhibitors than PBP1a (ranges, 4 to 5 versus 8 to 144 µM, respectively). A molecular model with ampicillin and sulbactam positioned in the active site of PBP3 reveals that both compounds interact similarly with residues Thr526, Thr528, and Ser390. Accepting that many interactions with cell wall targets are possible with the ampicillin-sulbactam combination, the low IC(50)s of ampicillin and sulbactam for PBP3 may contribute to understanding why this combination is effective against A. baumannii. Unraveling the contribution of PBPs to ß-lactam susceptibility and resistance brings us one step closer to identifying which PBPs are the best targets for novel ß-lactams.


Asunto(s)
Acinetobacter baumannii/química , Acinetobacter/química , Antibacterianos/química , Inhibidores Enzimáticos/química , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Resistencia betalactámica , Acinetobacter/enzimología , Acinetobacter baumannii/enzimología , Ampicilina/química , Bioensayo , Compuestos de Boro/química , Humanos , Cinética , Simulación del Acoplamiento Molecular , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Penicilinas/química , Solubilidad , Especificidad por Sustrato , Sulbactam/química , Inhibidores de beta-Lactamasas , beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamas/química
5.
J Med Chem ; 65(7): 5675-5689, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35332774

RESUMEN

Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity. Tumor shrinkage in mouse models that are intrinsically resistant to single-agent therapy was further enhanced when treating the animals with MK-1454 in combination with a fully murinized antimouse PD-1 antibody, mDX400. These data support the development of STING agonists in combination with pembrolizumab (humanized anti-PD-1 antibody) for patients with tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 therapy.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Animales , Citocinas , Humanos , Inmunoterapia/métodos , Interferones , Ratones , Neoplasias/tratamiento farmacológico
6.
J Am Chem Soc ; 133(50): 20536-45, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22050378

RESUMEN

Multi-drug-resistant forms of the Gram-negative pathogen Acinetobacter baumannii are an emerging threat to human health and further complicate the general problem of treating serious bacterial infections. Meeting this challenge requires an improved understanding of the relationships between the structures of major therapeutic targets in this organism and the activity levels exhibited against it by different antibiotics. Here we report the first crystal structures of A. baumannii penicillin-binding proteins (PBPs) covalently inactivated by four ß-lactam antibiotics. We also relate the results to kinetic, biophysical, and computational data. The structure of the class A protein PBP1a was solved in apo form and for its covalent conjugates with benzyl penicillin, imipenem, aztreonam, and the siderophore-conjugated monocarbam MC-1. It included a novel domain genetically spliced into a surface loop of the transpeptidase domain that contains three conserved loops. Also reported here is the first high-resolution structure of the A. baumannii class B enzyme PBP3 in apo form. Comparison of this structure with that of MC-1-derivatized PBP3 of Pseudomonas aeruginosa identified differences between these orthologous proteins in A. baumannii and P. aeruginosa. Thermodynamic analyses indicated that desolvation effects in the PBP3 ligand-binding sites contributed significantly to the thermal stability of the enzyme-antibiotic covalent complexes. Across a significant range of values, they correlated well with results from studies of inactivation kinetics and the protein structures. The structural, biophysical, and computational data help rationalize differences in the functional performance of antibiotics against different protein targets and can be used to guide the design of future agents.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , beta-Lactamas/farmacología , Acinetobacter baumannii/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Cromatografía Liquida , Cristalización , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular
7.
ACS Med Chem Lett ; 12(3): 459-466, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33738073

RESUMEN

Hematopoietic progenitor kinase (HPK1), a negative regulator of TCR-mediated T-cell activation, has been recognized as a novel antitumor immunotherapy target. Structural optimization of kinase inhibitor 4 through a systematic two-dimensional diversity screen of pyrazolopyridines led to the identification of potent and selective compounds. Crystallographic studies with HPK1 revealed a favorable water-mediated interaction with Asp155 and a salt bridge to Asp101 with optimized heterocyclic solvent fronts that were critical for enhanced potency and selectivity. Computational studies of model systems revealed differences in torsional profiles that allowed for these beneficial protein-ligand interactions. Further optimization of molecular properties led to identification of potent and selective reverse indazole inhibitor 36 that inhibited phosphorylation of adaptor protein SLP76 in human PBMC and exhibited low clearance with notable bioavailability in in vivo rat studies.

8.
ACS Med Chem Lett ; 12(4): 653-661, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859804

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase, is a negative immune regulator of T cell receptor (TCR) and B cell signaling that is primarily expressed in hematopoietic cells. Accordingly, it has been reported that HPK1 loss-of-function in HPK1 kinase-dead syngeneic mouse models shows enhanced T cell signaling and cytokine production as well as tumor growth inhibition in vivo, supporting its value as an immunotherapeutic target. Herein, we present the structurally enabled discovery of novel, potent, and selective diaminopyrimidine carboxamide HPK1 inhibitors. The key discovery of a carboxamide moiety was essential for enhanced enzyme inhibitory potency and kinome selectivity as well as sustained elevation of cellular IL-2 production across a titration range in human peripheral blood mononuclear cells. The elucidation of structure-activity relationships using various pendant amino ring systems allowed for the identification of several small molecule type-I inhibitors with promising in vitro profiles.

9.
SLAS Discov ; 26(1): 88-99, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844715

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1), also referred to as mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), is a serine/threonine kinase that negatively regulates T-cell signaling by phosphorylating Ser376 of Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76), a critical mediator of T-cell receptor activation. HPK1 loss of function mouse models demonstrated enhanced immune cell activation and beneficial antitumor activity. To enable discovery and functional characterization of high-affinity small-molecule HPK1 inhibitors, we have established high-throughput biochemical, cell-based, and novel pharmacodynamic (PD) assays. Kinase activity-based time-resolved fluorescence energy transfer (TR-FRET) assays were established as the primary biochemical approach to screen for potent inhibitors and assess selectivity against members of MAP4K and other closely related kinases. A proximal target engagement (TE) assay quantifying pSLP-76 levels as a readout and a distal assay measuring IL-2 secretion as a functional response were established using human peripheral blood mononuclear cells (PBMCs) from two healthy donors. Significant correlations between biochemical and cellular assays as well as excellent correlation between the two donors for the cellular assays were observed. pSLP-76 levels were further used as a PD marker in the preclinical murine model. This effort required the development of a novel ultrasensitive single-molecule array (SiMoA) assay to monitor pSLP-76 changes in mouse spleen.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Animales , Línea Celular , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ratones , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
10.
J Med Chem ; 64(7): 3911-3939, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33755451

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Nucleósidos/uso terapéutico , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Aminoquinolinas/síntesis química , Aminoquinolinas/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Ratones SCID , Simulación del Acoplamiento Molecular , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Relación Estructura-Actividad
11.
PLoS One ; 15(12): e0243145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270695

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of signal transduction in immune cells, including T cells, B cells, and dendritic cells (DCs). In mice, HPK1 deficiency subverts inhibition of the anti-tumor immune response and is associated with functional augmentation of anti-tumor T cells. We have used a potent, small molecule HPK1 inhibitor, Compound 1, to investigate the effects of pharmacological intervention of HPK1 kinase activity in immune cells. Compound 1 enhanced Th1 cytokine production in T cells and fully reverted immune suppression imposed by the prostaglandin E2 (PGE2) and adenosine pathways in human T cells. Moreover, the combination of Compound 1 with pembrolizumab, a humanized monoclonal antibody against the programmed cell death protein 1 (PD-1), demonstrated a synergistic effect, resulting in enhanced interferon (IFN)-γ production. Collectively, our results suggest that blocking HPK1 kinase activity with small molecule inhibitors alone or in combination with checkpoint blockade may be an attractive approach for the immunotherapy of cancer.


Asunto(s)
Activación de Linfocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Citocinas/inmunología , Femenino , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/inmunología , Linfocitos T/inmunología
12.
ACS Med Chem Lett ; 11(9): 1688-1693, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32944135

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) belongs to a family of enzymes that regulate the posttranslational modification of histones and other proteins via methylation of arginine. Methylation of histones is linked to an increase in transcription and regulates a manifold of functions such as signal transduction and transcriptional regulation. PRMT5 has been shown to be upregulated in the tumor environment of several cancer types, and the inhibition of PRMT5 activity was identified as a potential way to reduce tumor growth. Previously, four different modes of PRMT5 inhibition were known-competing (covalently or non-covalently) with the essential cofactor S-adenosyl methionine (SAM), blocking the substrate binding pocket, or blocking both simultaneously. Herein we describe an unprecedented conformation of PRMT5 in which the formation of an allosteric binding pocket abrogates the enzyme's canonical binding site and present the discovery of potent small molecule allosteric PRMT5 inhibitors.

13.
Science ; 369(6506)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32820094

RESUMEN

Pharmacological activation of the STING (stimulator of interferon genes)-controlled innate immune pathway is a promising therapeutic strategy for cancer. Here we report the identification of MSA-2, an orally available non-nucleotide human STING agonist. In syngeneic mouse tumor models, subcutaneous and oral MSA-2 regimens were well tolerated and stimulated interferon-ß secretion in tumors, induced tumor regression with durable antitumor immunity, and synergized with anti-PD-1 therapy. Experimental and theoretical analyses showed that MSA-2 exists as interconverting monomers and dimers in solution, but only dimers bind and activate STING. This model was validated by using synthetic covalent MSA-2 dimers, which were potent agonists. Cellular potency of MSA-2 increased upon extracellular acidification, which mimics the tumor microenvironment. These properties appear to underpin the favorable activity and tolerability profiles of effective systemic administration of MSA-2.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de la Membrana/metabolismo , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Humanos
14.
ACS Med Chem Lett ; 10(1): 92-97, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655953

RESUMEN

Drugging large protein pockets is a challenge due to the need for higher molecular weight ligands, which generally possess undesirable physicochemical properties. In this communication, we highlight a strategy leveraging small molecule active site dimers to inhibit the large symmetric binding pocket in the STING protein. By taking advantage of the 2:1 binding stoichiometry, maximal buried interaction with STING protein can be achieved while maintaining the ligand physicochemical properties necessary for oral exposure. This mode of binding requires unique considerations for potency optimization including simultaneous optimization of protein-ligand as well as ligand-ligand interactions. Successful implementation of this strategy led to the identification of 18, which exhibits good oral exposure, slow binding kinetics, and functional inhibition of STING-mediated cytokine release.

15.
Biochemistry ; 47(48): 12810-21, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-18986163

RESUMEN

Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to function at acidic pH.


Asunto(s)
Selenio/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Ácido Ditionitrobenzoico/metabolismo , Drosophila melanogaster/enzimología , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Análisis Espectral , Sulfuros/química
16.
J Pept Sci ; 14(5): 637-47, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18035847

RESUMEN

Mammalian thioredoxin reductase (TR) catalyzes the reduction of the redox-active disulfide bond of thioredoxin (Trx) and is similar in structure and mechanism to glutathione reductase except for a C-terminal 16-amino acid extension containing a rare vicinal selenylsulfide bond. This vicinal selenylsulfide bond is essentially a substrate for the enzyme's N-terminal redox center. Here we report the synthesis of peptide substrates for the truncated enzyme missing the C-terminal redox center. We developed a procedure for the synthesis of peptides containing cyclic vicinal disulfide/selenylsulfide bonds as well as their corresponding acyclic heterodimers. Vicinal disulfide bonds form eight-membered ring structures and are difficult to synthesize owing to their propensity to dimerize during oxidation. Our procedure makes use of two key improvements for on-resin disulfide bond formation presented previously by Galande and coworkers (Galande AK, Weissleder R, Tung C-H. An effective method of on-resin disulfide bond formation in peptides. J. Comb. Chem. 2005; 7: 174-177). First, the addition of an amine base to the deprotection solution allows the complete removal of the StBu group, allowing it to be replaced with a 5-Npys group. The second enhancement is the direct use of a Cys(Mob) or Sec(Mob) derivative as the nucleophilic partner instead of utilizing a naked sulfhydryl or selenol. These improvements result in the formation of a vicinal disulfide (or selenylsulfide) bond in high purity and yield. A direct comparison with the Galande procedure is presented. We also present a novel strategy for the formation of an acyclic, interchain selenylsulfide-linked peptide (linking H-PTVTGC-OH and H-UG-OH). Cysteine analogs of the cyclic and acyclic peptides were also synthesized. The results show that the ring structure contributes a factor of 52 to the rate, but the presence of selenium in the peptide is more important to catalysis than the presence of the ring.


Asunto(s)
Oligopéptidos/síntesis química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Clonación Molecular , Disulfuros/química , Transporte de Electrón , Técnicas In Vitro , Ratones , Estructura Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética
17.
Biochemistry ; 46(33): 9472-83, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17661444

RESUMEN

High-molecular weight thioredoxin reductases (TRs) catalyze the reduction of the redox-active disulfide bond of thioredoxin, but an important difference in the TR family is the sequence of the C-terminal redox-active tetrapeptide that interacts directly with thioredoxin, especially the presence or absence of a selenocysteine (Sec) residue in this tetrapeptide. In this study, we have employed protein engineering techniques to investigate the C-terminal redox-active tetrapeptides of three different TRs: mouse mitochondrial TR (mTR3), Drosophila melanogaster TR (DmTR), and the mitochondrial TR from Caenorhabditis elegans (CeTR2), which have C-terminal tetrapeptide sequences of Gly-Cys-Sec-Gly, Ser-Cys-Cys-Ser, and Gly-Cys-Cys-Gly, respectively. Three different types of mutations and chemical modifications were performed in this study: insertion of alanine residues between the cysteine residues of the Cys-Cys or Cys-Sec dyads, modification of the charge at the C-terminus, and altering the position of the Sec residue in the mammalian enzyme. The results show that mTR3 is quite accommodating to insertion of alanine residues into the Cys-Sec dyad, with only a 4-6-fold drop in catalytic activity. In contrast, the activity of both DmTR and CeTR2 was reduced 100-300-fold when alanine residues were inserted into the Cys-Cys dyad. We have tested the importance of a salt bridge between the C-terminus and a basic residue that was proposed for orienting the Cys-Sec dyad of mTR3 for proper catalytic position by changing the C-terminal carboxylate to a carboxamide. The result is an enzyme with twice the activity as the wild-type mammalian enzyme. A similar result was achieved when the C-terminal carboxylate of DmTR was converted to a hydroxamic acid or a thiocarboxylate. Last, reversing the positions of the Cys and Sec residues in the catalytic dyad resulted in a 100-fold loss of catalytic activity. Taken together, the results support our previous model of Sec as the leaving group during reduction of the C-terminus during the catalytic cycle.


Asunto(s)
Reductasa de Tiorredoxina-Disulfuro/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Dinitrobencenos/química , Drosophila melanogaster/enzimología , Transporte de Electrón , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Ratones , Peso Molecular , Mutación , Oxidación-Reducción , Peroxidasa/química , Ingeniería de Proteínas , Reductasa de Tiorredoxina-Disulfuro/síntesis química , Reductasa de Tiorredoxina-Disulfuro/genética
18.
Biochem Biophys Res Commun ; 346(3): 629-36, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16780799

RESUMEN

Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a kcat of 610 min(-1) and a Km of 610 microM using E. coli thioredoxin as substrate. The reported kcat is 25% of the kcat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.


Asunto(s)
Caenorhabditis elegans/enzimología , Mitocondrias/enzimología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Caenorhabditis elegans/genética , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Mutación/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Compuestos de Sulfhidrilo/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA