Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 168: 16-26, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26692413

RESUMEN

Model studies were conducted to investigate the potential coral reef sediment exposure from dredging associated with proposed development of a deepwater wharf in Apra Harbor, Guam. The Particle Tracking Model (PTM) was applied to quantify the exposure of coral reefs to material suspended by the dredging operations at two alternative sites. Key PTM features include the flexible capability of continuous multiple releases of sediment parcels, control of parcel/substrate interaction, and the ability to efficiently track vast numbers of parcels. This flexibility has facilitated simulating the combined effects of sediment released from clamshell dredging and chiseling within Apra Harbor. Because the rate of material released into the water column by some of the processes is not well understood or known a priori, the modeling approach was to bracket parameters within reasonable ranges to produce a suite of potential results from multiple model runs. Sensitivity analysis to model parameters is used to select the appropriate parameter values for bracketing. Data analysis results include mapping the time series and the maximum values of sedimentation, suspended sediment concentration, and deposition rate. Data were used to quantify various exposure processes that affect coral species in Apra Harbor. The goal of this research is to develop a robust methodology for quantifying and bracketing exposure mechanisms to coral (or other receptors) from dredging operations. These exposure values were utilized in an ecological assessment to predict effects (coral reef impacts) from various dredging scenarios.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes del Agua/efectos adversos , Animales , Guam , Modelos Teóricos
2.
J Environ Manage ; 168: 111-22, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26704453

RESUMEN

Coral reefs are in decline worldwide due to anthropogenic stressors including reductions in water and substratum quality. Dredging results in the mobilization of sediments, which can stress and kill corals via increasing turbidity, tissue damage and burial. The Particle Tracking Model (PTM) was applied to predict the potential impacts of dredging-associated sediment exposure on the coral reef ecosystems of Apra Harbor, Guam. The data were interpreted using maps of bathymetry and coral abundance and distribution in conjunction with impact parameters of suspended sediment concentration (turbidity) and sedimentation using defined coral response thresholds. The results are presented using a "stoplight" model of negligible or limited impacts to coral reefs (green), moderate stress from which some corals would be expected to recover while others would not (yellow) and severe stress resulting in mortality (red). The red conditions for sediment deposition rate and suspended sediment concentration (SSC) were defined as values exceeding 25 mg cm(-2) d(-1) over any 30 day window and >20 mg/l for any 18 days in any 90 day period over a column of water greater than 2 m, respectively. The yellow conditions were defined as values >10 mg cm(-2) d(-1) and <25 mg cm(-2) d(-1) over any 30 day period, and as 20% of 3 months' concentration exceeding 10 mg/l for the deposition and SSC, respectively. The model also incorporates the potential for cumulative effects on the assumption that even sub-lethal stress levels can ultimately lead to mortality in a multi-stressor system. This modeling approach can be applied by resource managers and regulatory agencies to support management decisions related to planning, site selection, damage reduction, and compensatory mitigation.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Contaminantes del Agua/toxicidad , Animales , Ecosistema , Guam , Modelos Teóricos
3.
Integr Environ Assess Manag ; 20(2): 547-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37593916

RESUMEN

In major harbors and ports in the United States and its territories, the US Army Corps of Engineers maintains federal navigation channels in proximity to coral reefs (e.g., Honolulu Harbor, HI; Miami Harbor, FL; Apra Harbor, Guam) and other sensitive habitats. To effectively predict potential adverse impacts from dredging activities near these sensitive habitats, a holistic approach to improve understanding of the pressures on these habitats is needed to foster a more complete prediction of risk drivers. To achieve this, risk-based frameworks that account for the full range of natural and anthropogenic impacts need to be adapted and applied specifically for assessing and managing indirect dredging impacts on sensitive environments. In this article, we address this need by incorporating a drivers-pressures-stressors-condition-response (DPSCR4 ) conceptual framework to broaden a comprehensive conceptual model of the coupled human-ecological system. To help understand these complex interactions, DPSCR4 was applied to evaluate dredging and other unrelated environmental pressures (e.g., terrestrial runoff) in a proof-of-concept dredging project in Honolulu Harbor, Hawai'i, USA, with a focus on the indirect effects of dredge plumes. Particle tracking models and risk-based tools were used to evaluate sediment resuspended during a hypothetical mechanical dredging activity near sensitive coral habitats. Stoplight indicators were developed to predict indirect sediment plume impacts on coral and then compared to exposure modeling results. The strengths and limitations of the approach are presented and the incorporation of the risk framework into environmental management decisions is discussed. Integr Environ Assess Manag 2024;20:547-561. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Humanos , Hawaii , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Ecosistema , Antozoos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA