Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 14(4): 225-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23486282

RESUMEN

For decades, Waddington's concept of the 'epigenetic landscape' has served as an educative hierarchical model to illustrate the progressive restriction of cell differentiation potential during normal development. While still being highly valuable in the context of normal development, the Waddington model falls short of accommodating recent breakthroughs in cell programming. The advent of induced pluripotent stem (iPS) cells and advances in direct cell fate conversion (also known as transdifferentiation) suggest that somatic and pluripotent cell fates can be interconverted without transiting through distinct hierarchies. We propose a non-hierarchical 'epigenetic disc' model to explain such cell fate transitions, which provides an alternative landscape for modelling cell programming and reprogramming.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Epigénesis Genética , Células Madre Pluripotentes/metabolismo , Animales , Linaje de la Célula/genética , Transdiferenciación Celular/genética , Humanos , Modelos Genéticos , Células Madre Pluripotentes/citología
2.
Nat Rev Mol Cell Biol ; 14(4): 225-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23847783

RESUMEN

For decades, Waddington's concept of the 'epigenetic landscape' has served as an educative hierarchical model to illustrate the progressive restriction of cell differentiation potential during normal development. While still being highly valuable in the context of normal development, the Waddington model falls short of accommodating recent breakthroughs in cell programming. The advent of induced pluripotent stem (iPS) cells and advances in direct cell fate conversion (also known as transdifferentiation) suggest that somatic and pluripotent cell fates can be interconverted without transiting through distinct hierarchies. We propose a non-hierarchical 'epigenetic disc' model to explain such cell fate transitions, which provides an alternative landscape for modelling cell programming and reprogramming.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Modelos Genéticos , Células Madre/fisiología , Animales , Linaje de la Célula , Ectodermo/citología , Endodermo/citología , Humanos , Mesodermo/citología
3.
EMBO Rep ; 23(5): e54027, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35289477

RESUMEN

Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human-specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited-induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule-associated protein-like 1 (EML1) gene. EML1-deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single-cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human-specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes-associated protein 1 (YAP1)-triggered expansion. Our data highlight a progenitor origin of EML1 mutation-induced MCD and provide new mechanistic insight into the human disease pathology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Corteza Cerebral/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Neuronas/metabolismo , Organoides/metabolismo
4.
EMBO Rep ; 23(11): e54728, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36098218

RESUMEN

The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia-the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.


Asunto(s)
Hominidae , Neocórtex , Células-Madre Neurales , Animales , Humanos , Células-Madre Neurales/metabolismo , Organoides/metabolismo , Hominidae/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo , Neocórtex/metabolismo , Neurogénesis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo
5.
Semin Cell Dev Biol ; 111: 15-22, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32741653

RESUMEN

Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Organoides/metabolismo , Heterotopia Nodular Periventricular/genética , Diferenciación Celular , Corteza Cerebral/anomalías , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiopatología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Humanos , Lisencefalia/metabolismo , Lisencefalia/patología , Lisencefalia/fisiopatología , Megalencefalia/metabolismo , Megalencefalia/patología , Megalencefalia/fisiopatología , Microcefalia/metabolismo , Microcefalia/patología , Microcefalia/fisiopatología , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Organoides/patología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Heterotopia Nodular Periventricular/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células
6.
Anal Chem ; 94(25): 8847-8856, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35713335

RESUMEN

Depression is quickly becoming one of the world's most pressing public health crises, and there is an urgent need for better diagnostics and therapeutics. Behavioral models in animals and humans have not adequately addressed the diagnosis and treatment of depression, and biomarkers of mental illnesses remain ill-defined. It has been very difficult to identify biomarkers of depression because of in vivo measurement challenges. While our group has made important strides in developing in vivo tools to measure such biomarkers (e.g., serotonin) in mice using voltammetry, these tools cannot be easily applied for depression diagnosis and drug screening in humans due to the inaccessibility of the human brain. In this work, we take a chemical approach, ex vivo, to introduce a human-derived system to investigate brain serotonin. We utilize human induced pluripotent stem cells differentiated into serotonin neurons and establish a new ex vivo model of real-time serotonin neurotransmission measurements. We show that evoked serotonin release responds to stimulation intensity and tryptophan preloading, and that serotonin release and reuptake kinetics resemble those found in vivo in rodents. Finally, after selective serotonin reuptake inhibitor (SSRI) exposure, we find dose-dependent internalization of the serotonin reuptake transporters (a signature of the in vivo response to SSRI). Our new human-derived chemical model has great potential to provide an ex vivo chemical platform as a translational tool for in vivo neuropsychopharmacology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Serotonina , Animales , Biomarcadores , Humanos , Ratones , Neuronas , Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
7.
Stem Cells ; 37(11): 1429-1440, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31339593

RESUMEN

During nervous system development, early neuroepithelial stem (NES) cells with a highly polarized morphology and responsiveness to regionalizing morphogens give rise to radial glia (RG) cells, which generate region-specific neurons. Recently, stable neural cell populations reminiscent of NES cells have been obtained from pluripotent stem cells and the fetal human hindbrain. Here, we explore whether these cell populations, similar to their in vivo counterparts, can give rise to neural stem (NS) cells with RG-like properties and whether region-specific NS cells can be generated from NES cells with different regional identities. In vivo RG cells are thought to form from NES cells with the onset of neurogenesis. Therefore, we cultured NES cells temporarily in differentiating conditions. Upon reinitiation of growth factor treatment, cells were found to enter a developmental stage reflecting major characteristics of RG-like NS cells. These NES cell-derived NS cells exhibited a very similar morphology and marker expression as primary NS cells generated from human fetal tissue, indicating that conversion of NES cells into NS cells recapitulates the developmental progression of early NES cells into RG cells observed in vivo. Importantly, NS cells generated from NES cells with different regional identities exhibited stable region-specific transcription factor expression and generated neurons appropriate for their positional identity. Stem Cells 2019;37:1429-1440.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Humanos , Neuronas/citología , Neuronas/metabolismo , Rombencéfalo/citología , Rombencéfalo/metabolismo
8.
Nature ; 480(7378): 543-6, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22113611

RESUMEN

Machado-Joseph disease (MJD; also called spinocerebellar ataxia type 3) is a dominantly inherited late-onset neurodegenerative disorder caused by expansion of polyglutamine (polyQ)-encoding CAG repeats in the MJD1 gene (also known as ATXN3). Proteolytic liberation of highly aggregation-prone polyQ fragments from the protective sequence of the MJD1 gene product ataxin 3 (ATXN3) has been proposed to trigger the formation of ATXN3-containing aggregates, the neuropathological hallmark of MJD. ATXN3 fragments are detected in brain tissue of MJD patients and transgenic mice expressing mutant human ATXN3(Q71), and their amount increases with disease severity, supporting a relationship between ATXN3 processing and disease progression. The formation of early aggregation intermediates is thought to have a critical role in disease initiation, but the precise pathogenic mechanism operating in MJD has remained elusive. Here we show that L-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates Ca(2+)-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. This phenotype could be abolished by calpain inhibition, confirming a key role of this protease in ATXN3 aggregation. Aggregate formation was further dependent on functional Na(+) and K(+) channels as well as ionotropic and voltage-gated Ca(2+) channels, and was not observed in iPSCs, fibroblasts or glia, thereby providing an explanation for the neuron-specific phenotype of this disease. Our data illustrate that iPSCs enable the study of aberrant protein processing associated with late-onset neurodegenerative disorders in patient-specific neurons.


Asunto(s)
Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Ataxina-3 , Calcio/metabolismo , Calpaína/metabolismo , Células Cultivadas , Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Humanos , Neuronas/efectos de los fármacos
9.
Mol Ther ; 23(9): 1519-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26061647

RESUMEN

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder resulting from a functional deficiency of arylsulfatase A (ARSA), an enzyme that catalyzes desulfation of 3-O-sulfogalactosylceramide (sulfatide). Lack of active ARSA leads to the accumulation of sulfatide in oligodendrocytes, Schwann cells and some neurons and triggers progressive demyelination, the neuropathological hallmark of MLD. Several therapeutic approaches have been explored, including enzyme replacement, autologous hematopoietic stem cell-based gene therapy, intracerebral gene therapy or cell-based gene delivery into the central nervous system (CNS). However, long-term treatment of the blood-brain-barrier protected CNS remains challenging. Here we used MLD patient-derived induced pluripotent stem cells (iPSCs) to generate long-term self-renewing neuroepithelial stem cells and astroglial progenitors for cell-based ARSA replacement. Following transplantation of ARSA-overexpressing precursors into ARSA-deficient mice we observed a significant reduction of sulfatide storage up to a distance of 300 µm from grafted cells. Our data indicate that neural precursors generated via reprogramming from MLD patients can be engineered to ameliorate sulfatide accumulation and may thus serve as autologous cell-based vehicle for continuous ARSA supply in MLD-affected brain tissue.


Asunto(s)
Sistema Nervioso Central/metabolismo , Cerebrósido Sulfatasa/genética , Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Supervivencia Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Cerebrósido Sulfatasa/metabolismo , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Orden Génico , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Ratones , Ratones Noqueados , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción Genética
10.
Nat Methods ; 9(6): 575-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22484851

RESUMEN

Forced expression of proneural transcription factors has been shown to direct neuronal conversion of fibroblasts. Because neurons are postmitotic, conversion efficiencies are an important parameter for this process. We present a minimalist approach combining two-factor neuronal programming with small molecule-based inhibition of glycogen synthase kinase-3ß and SMAD signaling, which converts postnatal human fibroblasts into functional neuron-like cells with yields up to >200% and neuronal purities up to >80%.


Asunto(s)
Transdiferenciación Celular , Fibroblastos/fisiología , Neuronas/fisiología , Preescolar , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Lactante , Recién Nacido , Transducción de Señal/efectos de los fármacos , Proteínas Smad/antagonistas & inhibidores , Factores de Transcripción/farmacología
11.
Am J Pathol ; 182(5): 1769-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23499461

RESUMEN

Alterations in the microtubule (MT)-associated protein, tau, have emerged as a pivotal phenomenon in several neurodegenerative disorders, including frontotemporal dementia and Alzheimer's disease. Although compelling lines of evidence from various experimental models suggest that hyperphosphorylation and conformational changes of tau can cause its aggregation into filaments, the actual tau species and effective mechanisms that conspire to trigger the degeneration of human neurons remain obscure. Herein, we explored whether human embryonic stem cell-derived neural stem cells can be exploited to study consequences of an overexpression of 2N4R tau (two normal N-terminal and four MT-binding domains; n-tau) versus pseudohyperphosphorylated tau (p-tau) directly in human neurons. Given the involvement of tau in MT integrity and cellular homeostasis, we focused on the effects of both tau variants on subcellular transport and neuronal survival. By using inducible lentiviral overexpression, we show that p-tau, but not n-tau, readily leads to an MC-1-positive protein conformation and impaired mitochondrial transport. Although these alterations do not induce cell death under standard culture conditions, p-tau-expressing neurons cultured under non-redox-protected conditions undergo degeneration with formation of axonal varicosities sequestering transported proteins and progressive neuronal cell death. Our data support a causative link between the phosphorylation and conformational state of tau, microtubuli-based transport, and the vulnerability of human neurons to oxidative stress. They further depict human embryonic stem cell-derived neurons as a useful experimental model for studying tau-associated cellular alterations in an authentic human system.


Asunto(s)
Células Madre Embrionarias/citología , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Axones/metabolismo , Axones/patología , Muerte Celular , Diferenciación Celular , Humanos , Ratones , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Tauopatías/metabolismo , Proteínas tau/química
12.
Am J Pathol ; 180(6): 2404-16, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22510327

RESUMEN

Alzheimer's disease (AD) is the most frequent cause of dementia. There is compelling evidence that the proteolytic processing of the amyloid precursor protein (APP) and accumulation of amyloid-ß (Aß) peptides play critical roles in AD pathogenesis. Due to limited access to human neural tissue, pathogenetic studies have, so far, mostly focused on the heterologous overexpression of mutant human APP in non-human cells. In this study, we show that key steps in proteolytic APP processing are recapitulated in neurons generated from human embryonic and induced pluripotent stem cell-derived neural stem cells (NSC). These human NSC-derived neurons express the neuron-specific APP(695) splice variant, BACE1, and all members of the γ-secretase complex. The human NSC-derived neurons also exhibit a differentiation-dependent increase in Aß secretion and respond to the pharmacotherapeutic modulation by anti-amyloidogenic compounds, such as γ-secretase inhibitors and nonsteroidal anti-inflammatory drugs. Being highly amenable to genetic modification, human NSCs enable the study of mechanisms caused by disease-associated mutations in human neurons. Interestingly, the AD-associated PS1(L166P) variant revealed a partial loss of γ-secretase function, resulting in the decreased production of endogenous Aß40 and an increased Aß42/40 ratio. The PS1(L166P) mutant is also resistant to γ-secretase modulation by nonsteroidal anti-inflammatory drugs. Pluripotent stem cell-derived neurons thus provide experimental access to key steps in AD pathogenesis and can be used to screen pharmaceutical compounds directly in a human neuronal system.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/biosíntesis , Mutación , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Presenilina-1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/fisiología , Antiinflamatorios no Esteroideos/farmacología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Inhibidores Enzimáticos/farmacología , Humanos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fragmentos de Péptidos/biosíntesis
13.
Stem Cells ; 30(6): 1120-33, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22495829

RESUMEN

Reprogramming of adult human somatic cells to induced pluripotent stem cells (iPSCs) is a novel approach to produce patient-specific cells for autologous transplantation. Whether such cells survive long-term, differentiate to functional neurons, and induce recovery in the stroke-injured brain are unclear. We have transplanted long-term self-renewing neuroepithelial-like stem cells, generated from adult human fibroblast-derived iPSCs, into the stroke-damaged mouse and rat striatum or cortex. Recovery of forepaw movements was observed already at 1 week after transplantation. Improvement was most likely not due to neuronal replacement but was associated with increased vascular endothelial growth factor levels, probably enhancing endogenous plasticity. Transplanted cells stopped proliferating, could survive without forming tumors for at least 4 months, and differentiated to morphologically mature neurons of different subtypes. Neurons in intrastriatal grafts sent axonal projections to the globus pallidus. Grafted cells exhibited electrophysiological properties of mature neurons and received synaptic input from host neurons. Our study provides the first evidence that transplantation of human iPSC-derived cells is a safe and efficient approach to promote recovery after stroke and can be used to supply the injured brain with new neurons for replacement.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Neuronas/citología , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/cirugía , Anciano , Animales , Encéfalo/citología , Encéfalo/patología , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratas
14.
Proc Natl Acad Sci U S A ; 106(9): 3225-30, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19218428

RESUMEN

An intriguing question in human embryonic stem cell (hESC) biology is whether these pluripotent cells can give rise to stably expandable somatic stem cells, which are still amenable to extrinsic fate instruction. Here, we present a pure population of long-term self-renewing rosette-type hESC-derived neural stem cells (lt-hESNSCs), which exhibit extensive self-renewal, clonogenicity, and stable neurogenesis. Although lt-hESNSCs show a restricted expression of regional transcription factors, they retain responsiveness to instructive cues promoting the induction of distinct subpopulations, such as ventral midbrain and spinal cord fates. Using lt-hESNSCs as a donor source for neural transplantation, we provide direct evidence that hESC-derived neurons can establish synaptic connectivity with the mammalian nervous system. Combining long-term stability, maintenance of rosette-properties and phenotypic plasticity, lt-hESNSCs may serve as useful tool to study mechanisms of human NSC self-renewal, lineage segregation, and functional in vivo integration.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Embrión de Mamíferos/citología , Neuronas/citología , Células Madre/citología , Sinapsis , Línea Celular , Humanos , Neuronas/metabolismo , Células Madre/clasificación , Células Madre/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Sci Adv ; 8(6): eabl5792, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148180

RESUMEN

Symmetric and asymmetric cell divisions are conserved strategies for stem cell expansion and the generation of more committed progeny, respectively. Here, we demonstrate that in human neural stem cells (NSCs), lysosomes are asymmetrically inherited during mitosis. We show that lysosomes contain Notch receptors and that Notch activation occurs the acidic lysosome environment. The lysosome asymmetry correlates with the expression of the Notch target gene HES1 and the activity of Notch signaling in the daughter cells. Furthermore, an asymmetry of lysosomes and Notch receptors was also observed in a human organoid model of brain development with mitotic figures showing preferential inheritance of lysosomes and Notch receptor in that daughter cell remaining attached to the apical membrane. Thus, this study suggests a previously unknown function of lysosomes as a signaling hub to establish a bias in Notch signaling activity between daughter cells after an asymmetric cell division of human NSCs.


Asunto(s)
Células-Madre Neurales , Humanos , Lisosomas/metabolismo , Mitosis , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
16.
Cell Death Dis ; 13(10): 887, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270985

RESUMEN

In humans, most neurons are born during embryonic development and have to persist throughout the entire lifespan of an individual. Thus, human neurons have to develop elaborate survival strategies to protect against accidental cell death. We set out to decipher the developmental adaptations resulting in neuronal resilience. We demonstrate that, during the time course of maturation, human neurons install a complex and complementary anti-apoptotic signaling network. This includes i.) a downregulation of central proteins of the intrinsic apoptosis pathway including several caspases, ii.) a shift in the ratio of pro- and anti-apoptotic BCL-2 family proteins, and iii.) an elaborate regulatory network resulting in upregulation of the inhibitor of apoptosis protein (IAP) XIAP. Together, these adaptations strongly increase the threshold for apoptosis initiation when confronted with a wide range of cellular stressors. Our results highlight how human neurons are endowed with complex and redundant preemptive strategies to protect against stress and cell death.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Caspasas/metabolismo , Apoptosis/fisiología , Muerte Celular , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
17.
Stem Cells ; 26(7): 1705-12, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18420830

RESUMEN

A major prerequisite for the biomedical application of human embryonic stem cells (hESC) is the derivation of defined and homogeneous somatic cell types. Here we present a human doublecortin (DCX) promoter-based lineage-selection strategy for the generation of purified hESC-derived immature neurons. After transfection of hESC-derived neural precursors with a DCX-enhanced green fluorescent protein construct, fluorescence-activated cell sorting enables the enrichment of immature human neurons at purities of up to 95%. Selected neurons undergo functional maturation and are able to establish synaptic connections. Considering that the applicability of purified hESC-derived neurons would largely benefit from an efficient cryopreservation technique, we set out to devise defined freezing conditions involving caspase inhibition, which yield post-thaw recovery rates of up to 83%. Combined with our lineage-selection procedure this cryopreservation technique enables the generation of human neurons in a ready-to-use format for a large variety of biomedical applications.


Asunto(s)
Criopreservación/métodos , Células Madre Embrionarias/citología , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Neuropéptidos/genética , Animales , Linaje de la Célula , Células Cultivadas , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electrofisiología , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/embriología , Humanos , Ratones , Regiones Promotoras Genéticas
18.
Dialogues Clin Neurosci ; 21(2): 203-224, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636494

RESUMEN

Psychiatric disorders are a heterogeneous group of mental illnesses associated with a high social and economic burden on patients and society. The complex symptomatology of these disorders, coupled with our limited understanding of the structural and functional abnormalities affecting the brains of neuropsychiatric patients, has made it difficult to develop effective medical treatment strategies. With the advent of reprogramming technologies and recent developments in induced pluripotent stem (iPS) cell-based protocols for differentiation into defined neuronal cultures and 3-dimensional cerebral organoids, a new era of preclinical disease modeling has begun which could revolutionize drug discovery in psychiatry. This review provides an overview of iPS cell-based disease models in psychiatry and how these models contribute to our understanding of pharmacological drug action. We also propose a refined iPSC-based drug discovery pipeline, ranging from cell-based stratification of patients through improved screening and validation steps to more precise psychopharmacology.
.


Mettre la traduction ES.


Mettre la traduction FR.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Descubrimiento de Drogas/métodos , Trastornos Mentales/tratamiento farmacológico , Neuronas/efectos de los fármacos , Organoides/efectos de los fármacos , Psicofarmacología/métodos , Técnicas de Cultivo de Tejidos/métodos , Animales , Corteza Cerebral/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Trastornos Mentales/fisiopatología , Neuronas/fisiología
19.
Front Cell Neurosci ; 13: 462, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695596

RESUMEN

[This corrects the article DOI: 10.3389/fncel.2019.00381.].

20.
Front Cell Neurosci ; 13: 381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481878

RESUMEN

The development of the cerebral cortex relies on different types of progenitor cell. Among them, the recently described basal radial glial cell (bRG) is suggested to be of critical importance for the development of the brain in gyrencephalic species. These cells are highly numerous in primate and ferret brains, compared to lissencephalic species such as the mouse in which they are few in number. Their somata are located in basal subventricular zones in gyrencephalic brains and they generally possess a basal process extending to the pial surface. They sometimes also have an apical process directed toward the ventricular surface, similar to apical radial glial cells (aRGs) from which they are derived, and whose somata are found more apically in the ventricular zone. bRGs share similarities with aRGs in terms of gene expression (SOX2, PAX6, and NESTIN), whilst also expressing a range of more specific genes (such as HOPX). In primate brains, bRGs can divide multiple times, self-renewing and/or generating intermediate progenitors and neurons. They display a highly specific cytokinesis behavior termed mitotic somal translocation. We focus here on recently identified molecular mechanisms associated with the generation and amplification of bRGs, including bRG-like cells in the rodent. These include signaling pathways such as the FGF-MAPK cascade, SHH, PTEN/AKT, PDGF pathways, and proteins such as INSM, GPSM2, ASPM, TRNP1, ARHGAP11B, PAX6, and HIF1α. A number of these proteins were identified through transcriptome comparisons in human aRGs vs. bRGs, and validated by modifying their activities or expression levels in the mouse. This latter experiment often revealed enhanced bRG-like cell production, even in some cases generating folds (gyri) on the surface of the mouse cortex. We compare the features of the identified cells and methods used to characterize them in each model. These important data converge to indicate pathways essential for the production and expansion of bRGs, which may help us understand cortical development in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA