Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Cell ; 83(21): 3763-3765, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922870

RESUMEN

Intrinsically disordered protein regions form condensates and mediate interactions with factors that regulate gene activity. Patil et al.1 decode how such regions within the chromatin remodeler cBAF choreograph self-condensation and non-self interactions with transcriptional regulators, potentially impacting disease.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Cromatina/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Dominios Proteicos
2.
Mol Cell ; 81(7): 1367-1369, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798413

RESUMEN

Mutations in ataxia telangiectasia mutated (ATM) kinase lead to cerebellar neurodegeneration. In this issue of Molecular Cell, Lee et al. (2021) revealed how transcription-induced reactive oxygen species and DNA-RNA hybrids activate PARP enzymes, generating the nucleic acid poly-ADP-ribose, which promotes the accumulation of protein aggregates in A-T-like disorders.


Asunto(s)
Ataxia Telangiectasia , Ácidos Nucleicos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Agregado de Proteínas , Proteostasis , Proteínas Supresoras de Tumor/genética
3.
Cell ; 153(6): 1394-405, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746849

RESUMEN

Drosophila cryptochrome (dCRY) is a FAD-dependent circadian photoreceptor, whereas mammalian cryptochromes (CRY1/2) are integral clock components that repress mCLOCK/mBMAL1-dependent transcription. We report crystal structures of full-length dCRY, a dCRY loop deletion construct, and the photolyase homology region of mouse CRY1 (mCRY1). Our dCRY structures depict Phe534 of the regulatory tail in the same location as the photolesion in DNA-repairing photolyases and reveal that the sulfur loop and tail residue Cys523 plays key roles in the dCRY photoreaction. Our mCRY1 structure visualizes previously characterized mutations, an NLS, and MAPK and AMPK phosphorylation sites. We show that the FAD and antenna chromophore-binding regions, a predicted coiled-coil helix, the C-terminal lid, and charged surfaces are involved in FAD-independent mPER2 and FBXL3 binding and mCLOCK/mBMAL1 transcriptional repression. The structure of a mammalian cryptochrome1 protein may catalyze the development of CRY chemical probes and the design of therapeutic metabolic modulators.


Asunto(s)
Relojes Circadianos , Criptocromos/química , Proteínas de Drosophila/química , Drosophila/metabolismo , Proteínas del Ojo/química , Secuencia de Aminoácidos , Animales , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Análisis Mutacional de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transporte de Electrón , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Circadianas Period/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Alineación de Secuencia , Transcripción Genética
4.
Mol Cell ; 79(6): 874-875, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946760

RESUMEN

PARP enzymes are increasingly taking on important roles beyond DNA repair. Huang et al. (2020b) report how the NAD+-dependent ADP-ribosylation of histone H2B by PARP-1 in complex with a metabolic enzyme suppresses the phosphorylation of an adjacent residue, impacting adipogenesis.


Asunto(s)
Histonas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , ADP-Ribosilación , Adipogénesis , Epigénesis Genética , Humanos , Obesidad , Fosforilación , Poli(ADP-Ribosa) Polimerasas
5.
Mol Cell ; 77(3): 501-513.e7, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31837996

RESUMEN

The histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA polymerase II (Pol II) passage through chromatin, yet it is not clear how they cooperate mechanistically. We used genomics, genetic, biochemical, and microscopic approaches to dissect their interplay in Schizosaccharomyces pombe. We show that FACT and H2Bub globally repress antisense transcripts near the 5' end of genes and inside gene bodies, respectively. The accumulation of these transcripts is accompanied by changes at genic nucleosomes and Pol II redistribution. H2Bub is required for FACT activity in genic regions. In the H2Bub mutant, FACT binding to chromatin is altered and its association with histones is stabilized, which leads to the reduction of genic nucleosomes. Interestingly, FACT depletion globally restores nucleosomes in the H2Bub mutant. Moreover, in the absence of Pob3, the FACT Spt16 subunit controls the 3' end of genes. Furthermore, FACT maintains nucleosomes in subtelomeric regions, which is crucial for their compaction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Ubiquitinación
6.
Mol Cell ; 68(5): 860-871.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220653

RESUMEN

DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Regulación Alostérica , Sitios de Unión , Línea Celular Tumoral , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Activación Enzimática , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli ADP Ribosilación , Poli Adenosina Difosfato Ribosa/química , Unión Proteica , Relación Estructura-Actividad , Factores de Tiempo
7.
Chembiochem ; 25(8): e202300865, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38442082

RESUMEN

Mono-ADP-ribosylation is a dynamic post-translational modification (PTM) with important roles in cell signalling. This modification occurs on a wide variety of amino acids, and one of the canonical modification sites within proteins is the side chain of glutamic acid. Given the transient nature of this modification (acylal linkage) and the high sensitivity of ADP-ribosylated glutamic acid, stabilized isosteres are required for structural and biochemical studies. Here, we report the synthesis of a mimic of ADP-ribosylated peptide derived from histone H2B that contains carba-ADP-ribosylated glutamine as a potential mimic for Glu-ADPr. We synthesized a cyclopentitol-ribofuranosyl derivative of 5'-phosphoribosylated Fmoc-glutamine and used this in the solid-phase synthesis of the carba-ADPr-peptide mimicking the ADP-ribosylated N-terminal tail of histone H2B. Binding studies with isothermal calorimetry demonstrate that the macrodomains of human MacroD2 and TARG1 bind to carba-ADPr-peptide in the same way as ADPr-peptides containing the native ADP-riboside moiety connected to the side chain of glutamine in the same peptide sequence.


Asunto(s)
Glutamina , Histonas , Humanos , Glutamina/química , Glutamina/metabolismo , Histonas/metabolismo , Péptidos/química , ADP-Ribosilación , Glutamatos/metabolismo
8.
Cell ; 138(1): 18-20, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596230

RESUMEN

Dynamic changes in histone and transcription factor acetylation modulate gene expression. A study in Science (Wellen et al., 2009) reports that changes in glucose metabolism alter the availability of acetyl-CoA, the essential cofactor for protein acetylation. These findings reveal a direct connection between central metabolism and mammalian gene expression.


Asunto(s)
Acetilcoenzima A/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Acetilación , Animales , Núcleo Celular/metabolismo , Citosol/metabolismo , Histonas/metabolismo , Mitocondrias/metabolismo
9.
Mol Cell ; 64(1): 7-9, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716488

RESUMEN

DNA damage induces chemical and structural changes in our chromatin-embedded genome. In a recent issue of Nature Communications, Grundy et al. (2016) identify a role for PARP3 in the repair of single-strand breaks and reveal that PARP3 mono-ADP-ribosylates nucleosomal histone H2B.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromatina/química , Reparación del ADN , ADN/genética , Histonas/genética , Poli(ADP-Ribosa) Polimerasas/genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Pollos , Cromatina/metabolismo , ADN/metabolismo , Roturas del ADN de Cadena Simple , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Xenopus laevis
10.
Cell ; 133(4): 577-80, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485866

RESUMEN

The synthesis of ribosomal RNA (rRNA) is carefully tuned to match nutritional conditions. In this issue, Murayama et al. (2008) describe a mechanism that couples the energy status of the cell to heterochromatin formation and silencing of rRNA genes. They show that an altered NAD(+)/NADH ratio in response to glucose starvation regulates the silencing activity of eNoSC, a complex consisting of the NAD(+)-dependent histone deacetylase SIRT1, the histone methyltransferase SUV39H1, and a new protein called nucleomethylin (NML). These results suggest a mechanism that links cell physiology to rDNA silencing, which in turn is a prerequisite for nucleolar integrity and cell survival.


Asunto(s)
ADN Ribosómico/genética , Metabolismo Energético , Epigénesis Genética , Animales , Nucléolo Celular/metabolismo , Supervivencia Celular , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , NAD/metabolismo , Proteína Metiltransferasas , Sirtuinas/metabolismo
11.
Mol Cell ; 59(5): 713-5, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26340421

RESUMEN

Oncogene activation is usually not enough to induce cancer, but causes cells to arrest proliferation, alter chromatin structure, and increase protein secretion. In this issue of Molecular Cell, Chen et al. (2015) implicate the histone variant macroH2A.1 in the regulation of senescence.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Senescencia Celular/genética , Senescencia Celular/fisiología , Histonas/genética , Histonas/metabolismo , Humanos
12.
Mol Cell ; 58(4): 621-31, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000847

RESUMEN

Multicellular organisms depend on cell-type-specific division of labor for survival. Specific cell types have their unique developmental program and respond differently to environmental challenges, yet are orchestrated by the same genetic blueprint. A key challenge in biology is thus to understand how genes are expressed in the right place, at the right time, and to the right level. Further, this exquisite control of gene expression is perturbed in many diseases. As a consequence, coordinated physiological responses to the environment are compromised. Recently, innovative tools have been developed that are able to capture genome-wide gene expression using cell-type-specific approaches. These novel techniques allow us to understand gene regulation in vivo with unprecedented resolution and give us mechanistic insights into how multicellular organisms adapt to changing environments. In this article, we discuss the considerations needed when designing your own cell-type-specific experiment from the isolation of your starting material through selecting the appropriate controls and validating the data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Especificidad de Órganos/genética , Análisis de la Célula Individual/métodos , Animales , Humanos , Reproducibilidad de los Resultados
13.
Mol Cell ; 55(3): 345-6, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25105485

RESUMEN

ISWI family chromatin remodeling enzymes generate regularly spaced nucleosome arrays. In a recent Nature report, Hwang et al. (2014) describe how ACF gauges the length of linker DNA when deciding to accelerate nucleosome sliding or to put on the brakes.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Humanos
14.
Trends Biochem Sci ; 41(9): 736-738, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27499233

RESUMEN

Chaperones mediate vital interactions between histones and DNA during chromatin assembly and reorganization. Two recent studies reveal novel substrates for the essential and conserved histone chaperone FAcilitates Chromatin Transcription (FACT). Prendergast et al. show that FACT helps deposit important histone-fold proteins on centromeres. Raj et al. find that FACT preferentially binds O-GlcNAcylated nucleosomes, suggesting that FACT may contribute to nutrient-regulated cellular programs.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Nucleosomas/metabolismo , Factores de Elongación Transcripcional/metabolismo , Centrómero/metabolismo , Histonas/metabolismo , Humanos , Nucleosomas/química
15.
Trends Biochem Sci ; 41(8): 700-711, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27283514

RESUMEN

Loss of cellular homeostasis during aging results in altered tissue functions and leads to a general decline in fitness and, ultimately, death. As animals age, the control of gene expression, which is orchestrated by multiple epigenetic factors, degenerates. In parallel, metabolic activity and mitochondrial protein acetylation levels also change. These two hallmarks of aging are effectively linked through the accumulating evidence that histone acetylation patterns are susceptible to alterations in key metabolites such as acetyl-CoA and NAD(+), allowing chromatin to function as a sensor of cellular metabolism. In this review we discuss experimental data supporting these connections and provide a context for the possible medical and physiological relevance.


Asunto(s)
Envejecimiento/genética , Histonas/genética , Histonas/metabolismo , Transcripción Genética/genética , Acetilación , Animales , Humanos
16.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30177554

RESUMEN

MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repressive effect that is common to all macroH2A proteins. In the absence of DNA damage, the macroH2A linker is also sufficient for rescuing heterochromatin architecture in cells deficient for macroH2A.


Asunto(s)
Cromatina/genética , Epigénesis Genética/genética , Histonas/química , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Cromatina/química , Cristalografía por Rayos X , Daño del ADN/genética , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
17.
Nature ; 499(7456): 111-4, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23698368

RESUMEN

Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the α1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.


Asunto(s)
Chaetomium/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Secuencias de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Replicación del ADN , Histonas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
18.
Nucleic Acids Res ; 45(2): 643-656, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123037

RESUMEN

Histone chaperones are proteins that interact with histones to regulate the thermodynamic process of nucleosome assembly. sNASP and ASF1 are conserved histone chaperones that interact with histones H3 and H4 and are found in a multi-chaperoning complex in vivo Previously we identified a short peptide motif within H3 that binds to the TPR domain of sNASP with nanomolar affinity. Interestingly, this peptide motif is sequestered within the known ASF1-H3-H4 interface, raising the question of how these two proteins are found in complex together with histones when they share the same binding site. Here, we show that sNASP contains at least two additional histone interaction sites that, unlike the TPR-H3 peptide interaction, are compatible with ASF1A binding. These surfaces allow ASF1A to form a quaternary complex with both sNASP and H3-H4. Furthermore, we demonstrate that sNASP makes a specific complex with H3 on its own in vitro, but not with H4, suggesting that it could work upstream of ASF1A. Further, we show that sNASP and ASF1A are capable of folding an H3-H4 dimer in vitro under native conditions. These findings reveal a network of binding events that may promote the entry of histones H3 and H4 into the nucleosome assembly pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas de Ciclo Celular/química , Chaperonas de Histonas/química , Histonas/química , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
19.
Genes Dev ; 25(17): 1835-46, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21896656

RESUMEN

The silent information regulator 2/3/4 (Sir2/3/4) complex is required for gene silencing at the silent mating-type loci and at telomeres in Saccharomyces cerevisiae. Sir3 is closely related to the origin recognition complex 1 subunit and consists of an N-terminal bromo-adjacent homology (BAH) domain and a C-terminal AAA(+) ATPase-like domain. Here, through a combination of structure biology and exhaustive mutagenesis, we identified unusual, silencing-specific features of the AAA(+) domain of Sir3. Structural analysis of the putative nucleotide-binding pocket in this domain reveals a shallow groove that would preclude nucleotide binding. Mutation of this site has little effect on Sir3 function in vivo. In contrast, several surface regions are shown to be necessary for the Sir3 silencing function. Interestingly, the Sir3 AAA(+) domain is shown here to bind chromatin in vitro in a manner sensitive to histone H3K79 methylation. Moreover, an exposed loop on the surface of this Sir3 domain is found to interact with Sir4. In summary, the unique folding of this conserved Sir3 AAA(+) domain generates novel surface regions that mediate Sir3-Sir4 and Sir3-nucleosome interactions, both being required for the proper assembly of heterochromatin in living cells.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Alelos , Cromatina/metabolismo , Metilación de ADN , Histonas/química , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética
20.
EMBO Rep ; 17(3): 455-69, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26781291

RESUMEN

Old age is associated with a progressive decline of mitochondrial function and changes in nuclear chromatin. However, little is known about how metabolic activity and epigenetic modifications change as organisms reach their midlife. Here, we assessed how cellular metabolism and protein acetylation change during early aging in Drosophila melanogaster. Contrary to common assumptions, we find that flies increase oxygen consumption and become less sensitive to histone deacetylase inhibitors as they reach midlife. Further, midlife flies show changes in the metabolome, elevated acetyl-CoA levels, alterations in protein-notably histone-acetylation, as well as associated transcriptome changes. Based on these observations, we decreased the activity of the acetyl-CoA-synthesizing enzyme ATP citrate lyase (ATPCL) or the levels of the histone H4 K12-specific acetyltransferase Chameau. We find that these targeted interventions both alleviate the observed aging-associated changes and promote longevity. Our findings reveal a pathway that couples changes of intermediate metabolism during aging with the chromatin-mediated regulation of transcription and changes in the activity of associated enzymes that modulate organismal life span.


Asunto(s)
Drosophila melanogaster/metabolismo , Histonas/metabolismo , Longevidad , Procesamiento Proteico-Postraduccional , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Histonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA