Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(3): 440-453.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032516

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.


Asunto(s)
Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/efectos de la radiación , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Terapia por Láser/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/efectos de la radiación , Microscopía Confocal , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de la radiación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Receptores de Reconocimiento de Patrones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Imagen de Lapso de Tiempo
2.
Plant Biotechnol J ; 22(3): 602-616, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37870975

RESUMEN

Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.


Asunto(s)
Ralstonia solanacearum , Ralstonia solanacearum/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421233

RESUMEN

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Asunto(s)
Citrus , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Citrus/genética , Citrus/microbiología , Xanthomonas/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
New Phytol ; 236(5): 1856-1870, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056465

RESUMEN

The Xanthomonas transcription activator-like effector (TALE) protein AvrBs3 transcriptionally activates the executor-type resistance (R) gene Bs3 from pepper (Capsicum annuum), thereby triggering a hypersensitive cell death reaction (HR). AvrBs3 also triggers an HR in tomato (Solanum lycopersicum) upon recognition by the nucleotide-binding leucine-rich repeat (NLR) R protein Bs4. Whether the executor-type R protein Bs3 and the NLR-type R protein Bs4 use common or distinct signalling components to trigger an HR remains unclear. CRISPR/Cas9-mutagenesis revealed, that the immune signalling node EDS1 is required for Bs4- but not for Bs3-dependent HR, suggesting that NLR- and executor-type R proteins trigger an HR via distinct signalling pathways. CRISPR/Cas9-mutagenesis also revealed that tomato Bs4 suppresses the virulence function of both TALEs, the HR-inducing AvrBs3 protein and of AvrHah1, a TALE that does not trigger an HR in tomato. Analysis of AvrBs3- and AvrHah1-induced host transcripts and disease phenotypes in CRISPR/Cas9-induced bs4 mutant plants indicates that both TALEs target orthologous transcription factor genes to promote disease in tomato and pepper host plants. Our studies display that tomato mutants lacking the TALE-sensing Bs4 protein provide a novel platform to either uncover TALE-induced disease phenotypes or genetically dissect components of executor-triggered HR.


Asunto(s)
Solanum lycopersicum , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/genética , Proteínas Bacterianas/metabolismo , Xanthomonas/genética , Hojas de la Planta/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Physiol ; 180(3): 1647-1659, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31068387

RESUMEN

The pepper (Capsicum annuum) resistance gene bacterial spot3 (Bs3) is transcriptionally activated by the matching Xanthomonas euvesicatoria transcription-activator-like effector (TALE) AvrBs3. AvrBs3-induced Bs3 expression triggers a rapid and local cell death reaction, the hypersensitive response (HR). Bs3 is most closely related to plant flavin monooxygenases of the YUCCA (YUC) family, which catalyze the final step in auxin biosynthesis. Targeted mutagenesis of predicted NADPH- and FAD-cofactor sites resulted in Bs3 derivatives that no longer trigger HR, thereby suggesting that the enzymatic activity of Bs3 is crucial to Bs3-triggered HR. Domain swap experiments between pepper Bs3 and Arabidopsis (Arabidopsis thaliana) YUC8 uncovered functionally exchangeable and functionally distinct regions in both proteins, which is in agreement with a model whereby Bs3 evolved from an ancestral YUC gene. Mass spectrometric measurements revealed that expression of YUCs, but not expression of Bs3, coincides with an increase in auxin levels, suggesting that Bs3 and YUCs, despite their sequence similarity, catalyze distinct enzymatic reactions. Finally, we found that expression of Bs3 coincides with increased levels of the salicylic acid and pipecolic acid, two compounds that are involved in systemic acquired resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Capsicum/metabolismo , Oxigenasas/metabolismo , Ácidos Pipecólicos/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Capsicum/genética , Capsicum/microbiología , Muerte Celular/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Oxigenasas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/fisiología
6.
Proc Natl Acad Sci U S A ; 114(5): E897-E903, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28100489

RESUMEN

AvrHah1 [avirulence (avr) gene homologous to avrBs3 and hax2, no. 1] is a transcription activator-like (TAL) effector (TALE) in Xanthomonas gardneri that induces water-soaked disease lesions on fruits and leaves during bacterial spot of tomato. We observe that water from outside the leaf is drawn into the apoplast in X. gardneri-infected, but not X. gardneriΔavrHah1 (XgΔavrHah1)-infected, plants, conferring a dark, water-soaked appearance. The pull of water can facilitate entry of additional bacterial cells into the apoplast. Comparing the transcriptomes of tomato infected with X. gardneri vs. XgΔavrHah1 revealed the differential up-regulation of two basic helix-loop-helix (bHLH) transcription factors with predicted effector binding elements (EBEs) for AvrHah1. We mined our RNA-sequencing data for differentially up-regulated genes that could be direct targets of the bHLH transcription factors and therefore indirect targets of AvrHah1. We show that two pectin modification genes, a pectate lyase and pectinesterase, are targets of both bHLH transcription factors. Designer TALEs (dTALEs) for the bHLH transcription factors and the pectate lyase, but not for the pectinesterase, complement water soaking when delivered by XgΔavrHah1 By perturbing transcriptional networks and/or modifying the plant cell wall, AvrHah1 may promote water uptake to enhance tissue damage and eventual bacterial egression from the apoplast to the leaf surface. Understanding how disease symptoms develop may be a useful tool for improving the tolerance of crops from damaging disease lesions.


Asunto(s)
Proteínas Bacterianas/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Capsicum/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Polisacárido Liasas/genética , Solanum lycopersicum/microbiología , Factores de Transcripción/fisiología , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Capsicum/metabolismo , Activación Enzimática , Solanum lycopersicum/metabolismo , Fenotipo , Enfermedades de las Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Nicotiana/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba , Virulencia , Agua/metabolismo , Xanthomonas/genética , Xanthomonas/fisiología
7.
BMC Genomics ; 19(1): 16, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29301493

RESUMEN

BACKGROUND: Xanthomonas citri, a causal agent of citrus canker, has been a well-studied model system due to recent availability of whole genome sequences of multiple strains from different geographical regions. Major limitations in our understanding of the evolution of pathogenicity factors in X. citri strains sequenced by short-read sequencing methods have been tracking plasmid reshuffling among strains due to inability to accurately assign reads to plasmids, and analyzing repeat regions among strains. X. citri harbors major pathogenicity determinants, including variable DNA-binding repeat region containing Transcription Activator-like Effectors (TALEs) on plasmids. The long-read sequencing method, PacBio, has allowed the ability to obtain complete and accurate sequences of TALEs in xanthomonads. We recently sequenced Xanthomonas citri str. Xc-03-1638-1-1, a copper tolerant A group strain isolated from grapefruit in 2003 from Argentina using PacBio RS II chemistry. We analyzed plasmid profiles, copy number and location of TALEs in complete genome sequences of X. citri strains. RESULTS: We utilized the power of long reads obtained by PacBio sequencing to enable assembly of a complete genome sequence of strain Xc-03-1638-1-1, including sequences of two plasmids, 249 kb (plasmid harboring copper resistance genes) and 99 kb (pathogenicity plasmid containing TALEs). The pathogenicity plasmid in this strain is a hybrid plasmid containing four TALEs. Due to the intriguing nature of this pathogenicity plasmid with Tn3-like transposon association, repetitive elements and multiple putative sites for origins of replication, we might expect alternative structures of this plasmid in nature, illustrating the strong adaptive potential of X. citri strains. Analysis of the pathogenicity plasmid among completely sequenced X. citri strains, coupled with Southern hybridization of the pathogenicity plasmids, revealed clues to rearrangements of plasmids and resulting reshuffling of TALEs among strains. CONCLUSIONS: We demonstrate in this study the importance of long-read sequencing for obtaining intact sequences of TALEs and plasmids, as well as for identifying rearrangement events including plasmid reshuffling. Rearrangement events, such as the hybrid plasmid in this case, could be a frequent phenomenon in the evolution of X. citri strains, although so far it is undetected due to the inability to obtain complete plasmid sequences with short-read sequencing methods.


Asunto(s)
Plásmidos/genética , Recombinación Genética , Efectores Tipo Activadores de la Transcripción/genética , Xanthomonas/genética , Cromosomas Bacterianos , Cobre/farmacología , Elementos Transponibles de ADN , Genoma Bacteriano , Análisis de Secuencia de ADN , Xanthomonas/efectos de los fármacos
8.
Environ Microbiol ; 20(4): 1330-1349, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29215193

RESUMEN

Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.


Asunto(s)
Enfermedades de las Plantas/microbiología , Putrescina/metabolismo , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/microbiología , Xilema/metabolismo , Metabolómica , Virulencia , Factores de Virulencia/metabolismo , Xilema/microbiología
9.
Nucleic Acids Res ; 43(20): 10065-80, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26481363

RESUMEN

Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Organismos Acuáticos , Proteínas Bacterianas/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Variación Genética , Metagenómica , Unión Proteica , Estabilidad Proteica , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Repetitivas de Aminoácido , Homología Estructural de Proteína
10.
Plant Physiol ; 168(3): 849-58, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25953104

RESUMEN

In Arabidopsis (Arabidopsis thaliana), a number of defense-related metabolites are synthesized via indole-3-acetonitrile (IAN), including camalexin and indole-3-carboxylic acid (ICOOH) derivatives. Cytochrome P450 71A13 (CYP71A13) is a key enzyme for camalexin biosynthesis and catalyzes the conversion of indole-3-acetaldoxime (IAOx) to IAN. The CYP71A13 gene is located in tandem with its close homolog CYP71A12, also encoding an IAOx dehydratase. However, for CYP71A12, indole-3-carbaldehyde and cyanide were identified as major reaction products. To clarify CYP71A12 function in vivo and to better understand IAN metabolism, we generated two cyp71a12 cyp71a13 double knockout mutant lines. CYP71A12-specific transcription activator-like effector nucleases were introduced into the cyp71a13 background, and very efficient somatic mutagenesis was achieved. We observed stable transmission of the cyp71a12 mutation to the following generations, which is a major challenge for targeted mutagenesis in Arabidopsis. In contrast to cyp71a13 plants, in which camalexin accumulation is partially reduced, double mutants synthesized only traces of camalexin, demonstrating that CYP71A12 contributes to camalexin biosynthesis in leaf tissue. A major role of CYP71A12 was identified for the inducible biosynthesis of ICOOH. Specifically, the ICOOH methyl ester was reduced to 12% of the wild-type level in AgNO3-challenged cyp71a12 leaves. In contrast, indole-3-carbaldehyde derivatives apparently are synthesized via alternative pathways, such as the degradation of indole glucosinolates. Based on these results, we present a model for this surprisingly complex metabolic network with multiple IAN sources and channeling of IAOx-derived IAN into camalexin biosynthesis. In conclusion, transcription activator-like effector nuclease-mediated mutation is a powerful tool for functional analysis of tandem genes in secondary metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/deficiencia , Sistema Enzimático del Citocromo P-450/metabolismo , Desoxirribonucleasas/metabolismo , Técnicas de Inactivación de Genes , Indoles/metabolismo , Tiazoles/metabolismo , Transactivadores/metabolismo , Arabidopsis/enzimología , Secuencia de Bases , Patrón de Herencia/genética , Metabolómica , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis/genética , Mutación/genética , Oximas/metabolismo , Metabolismo Secundario
11.
Nucleic Acids Res ; 42(11): 7436-49, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24792163

RESUMEN

The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia/genética , Proteínas de Unión al ADN/química , Transactivadores/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , División del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genoma Bacteriano , Células HEK293 , Humanos , Señales de Localización Nuclear , Unión Proteica , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional
12.
Nucleic Acids Res ; 42(6): e38, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371265

RESUMEN

Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.


Asunto(s)
ADN Satélite/análisis , Proteínas de Unión al ADN , Animales , Ciclo Celular/genética , Línea Celular , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/química , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Ratones , Proteínas Recombinantes de Fusión/análisis
13.
Nucleic Acids Res ; 42(10): 6762-73, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24792154

RESUMEN

Designer nucleases have been successfully employed to modify the genomes of various model organisms and human cell types. While the specificity of zinc-finger nucleases (ZFNs) and RNA-guided endonucleases has been assessed to some extent, little data are available for transcription activator-like effector-based nucleases (TALENs). Here, we have engineered TALEN pairs targeting three human loci (CCR5, AAVS1 and IL2RG) and performed a detailed analysis of their activity, toxicity and specificity. The TALENs showed comparable activity to benchmark ZFNs, with allelic gene disruption frequencies of 15-30% in human cells. Notably, TALEN expression was overall marked by a low cytotoxicity and the absence of cell cycle aberrations. Bioinformatics-based analysis of designer nuclease specificity confirmed partly substantial off-target activity of ZFNs targeting CCR5 and AAVS1 at six known and five novel sites, respectively. In contrast, only marginal off-target cleavage activity was detected at four out of 49 predicted off-target sites for CCR5- and AAVS1-specific TALENs. The rational design of a CCR5-specific TALEN pair decreased off-target activity at the closely related CCR2 locus considerably, consistent with fewer genomic rearrangements between the two loci. In conclusion, our results link nuclease-associated toxicity to off-target cleavage activity and corroborate TALENs as a highly specific platform for future clinical translation.


Asunto(s)
Desoxirribonucleasas/metabolismo , Genoma Humano , Células Cultivadas , División del ADN , Desoxirribonucleasas/química , Sitios Genéticos , Células HEK293 , Células HeLa , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Ingeniería de Proteínas , Receptores CCR5/genética
14.
Plant J ; 78(5): 753-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24602153

RESUMEN

Whether rice, yeast or fly there is barely a model organism not yet reached by transcription activator-like effectors (TALEs) and their derivative fusion proteins. Insights into fundamental biology are now arriving on the back of work in recent years to develop these proteins as tools for molecular biology. This began with the publication of the simple cipher determining base-specific DNA recognition by TALEs in 2009, and now encompasses a huge variety of established fusion proteins mediating targeted modifications to transcriptome, genome and, recently, epigenome. Straightforward design and exquisite specificity, allowing unique sites to be targeted even within complex eukaryote genomes, are key to the popularity of this system. Synthetic biology is one field that is just beginning to make use of these properties, with a number of recent publications demonstrating TALE-mediated regulation of synthetic genetic circuits. Intense interest has surrounded the CRISPR/Cas9 system within the last 12 months, and it is already proving its mettle as a tool for targeted gene modifications and transcriptional regulation. However, questions over off-target activity and means for independent regulation of multiple Cas9-guide RNA pairs must be resolved before this method can be included in the synthetic biology toolbox. TALEs are already showing promise as regulators of synthetic biological systems, a role that is likely to be developed further in the coming years.


Asunto(s)
Biología Sintética/métodos , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Ingeniería Genética/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Nucleic Acids Res ; 41(7): 4118-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23408851

RESUMEN

Transcription activator-like effectors (TALEs) have revolutionized the field of genome engineering. We present here a systematic assessment of TALE DNA recognition, using quantitative electrophoretic mobility shift assays and reporter gene activation assays. Within TALE proteins, tandem 34-amino acid repeats recognize one base pair each and direct sequence-specific DNA binding through repeat variable di-residues (RVDs). We found that RVD choice can affect affinity by four orders of magnitude, with the relative RVD contribution in the order NG > HD ≈ NN >> NI > NK. The NN repeat preferred the base G over A, whereas the NK repeat bound G with 10(3)-fold lower affinity. We compared AvrBs3, a naturally occurring TALE that recognizes its target using some atypical RVD-base combinations, with a designed TALE that precisely matches 'standard' RVDs with the target bases. This comparison revealed unexpected differences in sensitivity to substitutions of the invariant 5'-T. Another surprising observation was that base mismatches at the 5' end of the target site had more disruptive effects on affinity than those at the 3' end, particularly in designed TALEs. These results provide evidence that TALE-DNA recognition exhibits a hitherto un-described polarity effect, in which the N-terminal repeats contribute more to affinity than C-terminal ones.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , Transactivadores/química , Transactivadores/metabolismo , ADN/metabolismo , Unión Proteica , Secuencias Repetitivas de Aminoácido , Activación Transcripcional
16.
Proc Natl Acad Sci U S A ; 109(47): 19480-5, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23132937

RESUMEN

Transcription activator-like effector (TALE) proteins of the plant pathogenic bacterial genus Xanthomonas bind to and transcriptionally activate host susceptibility genes, promoting disease. Plant immune systems have taken advantage of this mechanism by evolving TALE binding sites upstream of resistance (R) genes. For example, the pepper Bs3 and rice Xa27 genes are hypersensitive reaction plant R genes that are transcriptionally activated by corresponding TALEs. Both R genes have a hallmark expression pattern in which their transcripts are detectable only in the presence and not the absence of the corresponding TALE. By transcriptome profiling using next-generation sequencing (RNA-seq), we tested whether we could avoid laborious positional cloning for the isolation of TALE-induced R genes. In a proof-of-principle experiment, RNA-seq was used to identify a candidate for Bs4C, an R gene from pepper that mediates recognition of the Xanthomonas TALE protein AvrBs4. We identified one major Bs4C candidate transcript by RNA-seq that was expressed exclusively in the presence of AvrBs4. Complementation studies confirmed that the candidate corresponds to the Bs4C gene and that an AvrBs4 binding site in the Bs4C promoter directs its transcriptional activation. Comparison of Bs4C with a nonfunctional allele that is unable to recognize AvrBs4 revealed a 2-bp polymorphism within the TALE binding site of the Bs4C promoter. Bs4C encodes a structurally unique R protein and Bs4C-like genes that are present in many solanaceous genomes seem to be as tightly regulated as pepper Bs4C. These findings demonstrate that TALE-specific R genes can be cloned from large-genome crops with a highly efficient RNA-seq approach.


Asunto(s)
Proteínas Bacterianas/metabolismo , Capsicum/genética , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/fisiología , Proteínas Bacterianas/química , Capsicum/efectos de los fármacos , Capsicum/inmunología , Capsicum/microbiología , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Cicloheximida/farmacología , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estudios de Asociación Genética , Enfermedades de las Plantas/genética , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , Efectores Tipo Activadores de la Transcripción , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Transcriptoma/genética , Xanthomonas/efectos de los fármacos
17.
Mol Plant Microbe Interact ; 27(11): 1186-98, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25083909

RESUMEN

The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Manihot/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas axonopodis/patogenicidad , Proteínas Bacterianas/genética , Resistencia a la Enfermedad , Expresión Génica , Manihot/genética , Manihot/inmunología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Regulación hacia Arriba , Virulencia , Xanthomonas axonopodis/genética
19.
New Phytol ; 204(4): 823-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25539004

RESUMEN

Transcription activator-like effectors (TALEs) from plant pathogenic Xanthomonas spp. and the related RipTALs from Ralstonia solanacearum are DNA-binding proteins with a modular DNA-binding domain. This domain is both predictable and programmable, which simplifies elucidation of TALE function in planta and facilitates generation of DNA-binding modules with desired specificity for biotechnological approaches. Recently identified TALE host target genes that either promote or stop bacterial disease provide new insights into how expression of TALE genes affects the plant­pathogen interaction. Since its elucidation the TALE code has been continuously refined and now provides a mature tool that, in combination with transcriptome profiling, allows rapid isolation of novel TALE target genes. The TALE code is also the basis for synthetic promoter-traps that mediate recognition of TALE or RipTAL proteins in engineered plants. In this review, we will summarize recent findings in plant-focused TALE research. In addition, we will provide an outline of the newly established gene isolation approach for TALE or RipTAL host target genes with an emphasis on potential pitfalls.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas Fúngicas/metabolismo , Ingeniería Genética/métodos , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Clonación Molecular , Epigénesis Genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidad
20.
Nucleic Acids Res ; 40(12): 5368-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22387464

RESUMEN

Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2'-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes.


Asunto(s)
Epigénesis Genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Transactivadores/metabolismo , Activación Transcripcional , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Células Cultivadas , Metilación de ADN , Decitabina , Células Madre Embrionarias/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas , Transactivadores/química , Ácido Valproico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA