Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Circ Res ; 134(8): 1006-1022, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38506047

RESUMEN

BACKGROUND: In heart failure, signaling downstream the ß2-adrenergic receptor is critical. Sympathetic stimulation of ß2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind ß2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS: cAMP accumulation in real time downstream of the ß2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS: AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS: AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas , Cardiopatías , Receptores Adrenérgicos , Animales , Femenino , Humanos , Masculino , Ratones , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cardiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Regulación hacia Arriba
2.
Nature ; 587(7834): 460-465, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33149301

RESUMEN

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinógeno/biosíntesis , Atrios Cardíacos/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Atrios Cardíacos/citología , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Ratones , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Receptores de Calcitonina/metabolismo
3.
J Mol Cell Cardiol ; 190: 1-12, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514002

RESUMEN

BACKGROUND: Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. PURPOSE: To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. METHODS: Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. RESULTS: A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and structural based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns reminiscent of those seen in humans with persistent AF. CONCLUSIONS: This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.


Asunto(s)
Fibrilación Atrial , Modulador del Elemento de Respuesta al AMP Cíclico , Fibrosis , Atrios Cardíacos , Ratones Transgénicos , Proteómica , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Proteómica/métodos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Ratones , Regulación de la Expresión Génica , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Matriz Extracelular/metabolismo , Masculino
4.
J Mol Cell Cardiol ; 194: 85-95, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960317

RESUMEN

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.

5.
Circulation ; 142(12): 1159-1172, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32683896

RESUMEN

BACKGROUND: Enhanced diastolic calcium (Ca2+) release through ryanodine receptor type-2 (RyR2) has been implicated in atrial fibrillation (AF) promotion. Diastolic sarcoplasmic reticulum Ca2+ leak is caused by increased RyR2 phosphorylation by PKA (protein kinase A) or CaMKII (Ca2+/calmodulin-dependent kinase-II) phosphorylation, or less dephosphorylation by protein phosphatases. However, considerable controversy remains regarding the molecular mechanisms underlying altered RyR2 function in AF. We thus aimed to determine the role of SPEG (striated muscle preferentially expressed protein kinase), a novel regulator of RyR2 phosphorylation, in AF pathogenesis. METHODS: Western blotting was performed with right atrial biopsies from patients with paroxysmal AF. SPEG atrial knockout mice were generated using adeno-associated virus 9. In mice, AF inducibility was determined using intracardiac programmed electric stimulation, and diastolic Ca2+ leak in atrial cardiomyocytes was assessed using confocal Ca2+ imaging. Phosphoproteomics studies and Western blotting were used to measure RyR2 phosphorylation. To test the effects of RyR2-S2367 phosphorylation, knockin mice with an inactivated S2367 phosphorylation site (S2367A) and a constitutively activated S2367 residue (S2367D) were generated by using CRISPR-Cas9. RESULTS: Western blotting revealed decreased SPEG protein levels in atrial biopsies from patients with paroxysmal AF in comparison with patients in sinus rhythm. SPEG atrial-specific knockout mice exhibited increased susceptibility to pacing-induced AF by programmed electric stimulation and enhanced Ca2+ spark frequency in atrial cardiomyocytes with Ca2+ imaging, establishing a causal role for decreased SPEG in AF pathogenesis. Phosphoproteomics in hearts from SPEG cardiomyocyte knockout mice identified RyR2-S2367 as a novel kinase substrate of SPEG. Western blotting demonstrated that RyR2-S2367 phosphorylation was also decreased in patients with paroxysmal AF. RyR2-S2367A mice exhibited an increased susceptibility to pacing-induced AF, and aberrant atrial sarcoplasmic reticulum Ca2+ leak, as well. In contrast, RyR2-S2367D mice were resistant to pacing-induced AF. CONCLUSIONS: Unlike other kinases (PKA, CaMKII) that increase RyR2 activity, SPEG phosphorylation reduces RyR2-mediated sarcoplasmic reticulum Ca2+ release. Reduced SPEG levels and RyR2-S2367 phosphorylation typified patients with paroxysmal AF. Studies in S2367 knockin mouse models showed a causal relationship between reduced S2367 phosphorylation and AF susceptibility. Thus, modulating SPEG activity and phosphorylation levels of the novel S2367 site on RyR2 may represent a novel target for AF treatment.


Asunto(s)
Fibrilación Atrial/metabolismo , Señalización del Calcio , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Fibrilación Atrial/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
6.
Pflugers Arch ; 473(3): 331-347, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33399957

RESUMEN

Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.


Asunto(s)
Señalización del Calcio/fisiología , Cardiopatías/metabolismo , Corazón/fisiología , Animales , Humanos
7.
Circulation ; 140(8): 681-693, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31185731

RESUMEN

BACKGROUND: Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS: Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS: Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS: PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.


Asunto(s)
Fibrilación Atrial/metabolismo , Miocitos Cardíacos/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Animales , Fibrilación Atrial/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Noqueados , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 1/metabolismo , Proteómica , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal
8.
Basic Res Cardiol ; 115(4): 49, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32592107

RESUMEN

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Patients with HF exhibit a loss of junctophilin-2 (JPH2), a structural protein critical in forming junctional membrane complexes in which excitation-contraction takes place. Several mechanisms have been proposed to mediate the loss of JPH2, one being cleavage by the calcium-dependent protease calpain. The downstream mechanisms underlying HF progression after JPH2 cleavage are presently poorly understood. In this study, we used Labcas to bioinformatically predict putative calpain cleavage sites on JPH2. We identified a cleavage site that produces a novel C-terminal JPH2 peptide (JPH2-CTP) using several domain-specific antibodies. Western blotting revealed elevated JPH2-CTP levels in hearts of patients and mice with HF, corresponding to increased levels of calpain-2. Moreover, immunocytochemistry demonstrated nuclear localization of JPH2-CTP within ventricular myocytes isolated from a murine model of pressure overload-induced HF as well as rat ventricular myocytes treated with isoproterenol. Nuclear localization of JPH2-CTP and cellular remodeling were abrogated by a genetic mutation of the nuclear localization sequence within JPH2-CTP. Taken together, our studies identified a novel C-terminal fragment of JPH2 (JPH2-CTP) generated by calpain-2 mediated cleavage which localizes within the cardiomyocyte nucleus during HF. Blocking nuclear localization of JPH2-CTP protects cardiomyocytes from isoproterenol-induced hypertrophy in vitro. Future in vivo studies of the nuclear role of JPH2-CTP may reveal a causal association with adverse remodeling during HF and establish CTP as a therapeutic target.


Asunto(s)
Calpaína/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Núcleo Celular/metabolismo , Femenino , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Circ Res ; 123(8): 953-963, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30355031

RESUMEN

RATIONALE: Autosomal-dominant mutations in ryanodine receptor type 2 ( RYR2) are responsible for ≈60% of all catecholaminergic polymorphic ventricular tachycardia. Dysfunctional RyR2 subunits trigger inappropriate calcium leak from the tetrameric channel resulting in potentially lethal ventricular tachycardia. In vivo CRISPR/Cas9-mediated gene editing is a promising strategy that could be used to eliminate the disease-causing Ryr2 allele and hence rescue catecholaminergic polymorphic ventricular tachycardia. OBJECTIVE: To determine if somatic in vivo genome editing using the CRISPR/Cas9 system delivered by adeno-associated viral (AAV) vectors could correct catecholaminergic polymorphic ventricular tachycardia arrhythmias in mice heterozygous for RyR2 mutation R176Q (R176Q/+). METHODS AND RESULTS: Guide RNAs were designed to specifically disrupt the R176Q allele in the R176Q/+ mice using the SaCas9 ( Staphylococcus aureus Cas9) genome editing system. AAV serotype 9 was used to deliver Cas9 and guide RNA to neonatal mice by single subcutaneous injection at postnatal day 10. Strikingly, none of the R176Q/+ mice treated with AAV-CRISPR developed arrhythmias, compared with 71% of R176Q/+ mice receiving control AAV serotype 9. Total Ryr2 mRNA and protein levels were significantly reduced in R176Q/+ mice, but not in wild-type littermates. Targeted deep sequencing confirmed successful and highly specific editing of the disease-causing R176Q allele. No detectable off-target mutagenesis was observed in the wild-type Ryr2 allele or the predicted putative off-target site, confirming high specificity for SaCas9 in vivo. In addition, confocal imaging revealed that gene editing normalized the enhanced Ca2+ spark frequency observed in untreated R176Q/+ mice without affecting systolic Ca2+ transients. CONCLUSIONS: AAV serotype 9-based delivery of the SaCas9 system can efficiently disrupt a disease-causing allele in cardiomyocytes in vivo. This work highlights the potential of somatic genome editing approaches for the treatment of lethal autosomal-dominant inherited cardiac disorders, such as catecholaminergic polymorphic ventricular tachycardia.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Terapia Genética/métodos , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/terapia , Potenciales de Acción/genética , Animales , Proteína 9 Asociada a CRISPR/genética , Señalización del Calcio/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Vectores Genéticos , Frecuencia Cardíaca/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , ARN Guía de Kinetoplastida/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
10.
Circulation ; 138(15): 1569-1581, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-29669786

RESUMEN

BACKGROUND: Heart failure (HF) is a complex disease with a rising prevalence despite advances in treatment. Protein phosphatase 1 (PP1) has long been implicated in HF pathogenesis, but its exact role is both unclear and controversial. Most previous studies measured only the PP1 catalytic subunit (PP1c) without investigating its diverse set of interactors, which confer localization and substrate specificity to the holoenzyme. In this study, we define the PP1 interactome in cardiac tissue and test the hypothesis that this interactome becomes rearranged during HF progression at the level of specific PP1c interactors. METHODS: Mice were subjected to transverse aortic constriction and grouped on the basis of ejection fraction into sham, hypertrophy, moderate HF (ejection fraction, 30%-40%), and severe HF (ejection fraction <30%). Cardiac lysates were subjected to affinity purification with anti-PP1c antibodies followed by high-resolution mass spectrometry. PP1 regulatory subunit 7 (Ppp1r7) was knocked down in mouse cardiomyocytes and HeLa cells with adeno-associated virus serotype 9 and siRNA, respectively. Calcium imaging was performed on isolated ventricular myocytes. RESULTS: Seventy-one and 98 PP1c interactors were quantified from mouse cardiac and HeLa lysates, respectively, including many novel interactors and protein complexes. This represents the largest reproducible PP1 interactome data set ever captured from any tissue, including both primary and secondary/tertiary interactors. Nine PP1c interactors with changes in their binding to PP1c were strongly associated with HF progression, including 2 known (Ppp1r7 and Ppp1r18) and 7 novel interactors. Within the entire cardiac PP1 interactome, Ppp1r7 had the highest binding to PP1c. Cardiac-specific knockdown in mice led to cardiac dysfunction and disruption of calcium release from the sarcoplasmic reticulum. CONCLUSIONS: PP1 is best studied at the level of its interactome, which undergoes significant rearrangement during HF progression. The 9 key interactors that are associated with HF progression may represent potential targets in HF therapy. In particular, Ppp1r7 may play a central role in regulating the PP1 interactome by acting as a competitive molecular "sponge" of PP1c.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Mapas de Interacción de Proteínas , Proteína Fosfatasa 1/metabolismo , Animales , Señalización del Calcio , Dependovirus/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Vectores Genéticos , Células HeLa , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Unión Proteica , Proteína Fosfatasa 1/deficiencia , Proteína Fosfatasa 1/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
13.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438248

RESUMEN

Myocardial lipid metabolism is critical to normal heart function, whereas altered lipid regulation has been linked to cardiac diseases including cardiomyopathies. Genetic variants in the JPH2 gene can cause hypertrophic cardiomyopathy (HCM) and, in some cases, dilated cardiomyopathy (DCM). In this study, we tested the hypothesis that JPH2 variants identified in patients with HCM and DCM, respectively, cause distinct alterations in myocardial lipid profiles. Echocardiography revealed clinically significant cardiac dysfunction in both knock-in mouse models of cardiomyopathy. Unbiased myocardial lipidomic analysis demonstrated significantly reduced levels of total unsaturated fatty acids, ceramides, and various phospholipids in both mice with HCM and DCM, suggesting a common metabolic alteration in both models. On the contrary, significantly increased di- and triglycerides, and decreased co-enzyme were only found in mice with HCM. Moreover, mice with DCM uniquely exhibited elevated levels of cholesterol ester. Further in-depth analysis revealed significantly altered metabolites from all the lipid classes with either similar or opposing trends in JPH2 mutant mice with HCM or DCM. Together, these studies revealed, for the first time, unique alterations in the cardiac lipid composition-including distinct increases in neutral lipids and decreases in polar membrane lipids-in mice with HCM and DCM were caused by distinct JPH2 variants. These studies may aid the development of novel biomarkers or therapeutics for these inherited disorders.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiopatías , Animales , Humanos , Ratones , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Ceramidas , Proteínas de la Membrana/genética , Miocardio
14.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260363

RESUMEN

Background: Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. Purpose: To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. Methods: Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Results: A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and remodeling based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns that resembled those of humans with persistent AF. Conclusions: This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.

15.
Circ Genom Precis Med ; : e004614, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953222

RESUMEN

BACKGROUND: Accessory pathways are a common cause of supraventricular tachycardia (SVT) and can lead to sudden cardiac death in otherwise healthy children and adults when associated with Wolff-Parkinson-White syndrome. The goal of this study was to identify genetic variants within a large family with structurally normal hearts affected by SVT and Wolff-Parkinson-White syndrome and determine causality of the gene deficit in a corresponding mouse model. METHODS: Whole exome sequencing performed on 2 distant members of a 3-generation family in which multiple members were affected by SVT or Wolff-Parkinson-White pattern (preexcitation) on ECG identified MRC2 as a candidate gene. Serial electrocardiograms, intracardiac electrophysiology studies, echocardiography, optical mapping studies, and histology were performed on both Mrc2 mutant and WT (wild-type) mice. RESULTS: A rare HET (heterozygous) missense variant c.2969A>G;p.Glu990Gly (E990G) in MRC2 was identified as the leading candidate gene variant segregating with the cardiac phenotype following an autosomal-dominant Mendelian trait segregation pattern with variable expressivity. In vivo electrophysiology studies revealed reentrant SVT in E990G mice. Optical mapping studies in E990G mice demonstrated abnormal retrograde conduction, suggesting the presence of an accessory pathway. Histological analysis of E990G mouse hearts showed a disordered ECM (extracellular matrix) in the annulus fibrosus. Finally, Mrc2 knockdown in human cardiac fibroblasts enhanced accelerated cell migration. CONCLUSIONS: This study identified a rare nonsynonymous variant in the MRC2 gene in individuals with familial reentrant SVT, Wolff-Parkinson-White ECG pattern, and structurally normal hearts. Furthermore, Mrc2 knock-in mice revealed an increased incidence of reentrant SVT and bypass tract formation in the setting of preserved cardiac structure and function.

16.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38464671

RESUMEN

Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model. Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+). Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day-old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection. Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.

17.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798293

RESUMEN

Right ventricular dysfunction (RVD) is a risk factor for mortality in multiple cardiovascular diseases, but approaches to combat RVD are lacking. Therapies used for left heart failure are largely ineffective in RVD, and thus the identification of molecules that augment RV function could improve outcomes in a wide-array of cardiac limitations. Junctophilin-2 (JPH2) is an essential protein that plays important roles in cardiomyocytes, including calcium handling/maintenance of t-tubule structure and gene transcription. Additionally, JPH2 may regulate mitochondrial function as Jph2 knockout mice exhibit cardiomyocyte mitochondrial swelling and cristae derangements. Moreover, JPH2 knockdown in embryonic stem cell-derived cardiomyocytes induces downregulation of the mitochondrial protein mitofusin-2 (MFN2), which disrupts mitochondrial cristae structure and transmembrane potential. Impaired mitochondrial metabolism drives RVD, and here we evaluated the mitochondrial role of JPH2. We showed JPH2 directly interacts with MFN2, ablation of JPH2 suppresses mitochondrial biogenesis, oxidative capacity, and impairs lipid handling in iPSC-CM. Gene therapy with AAV9-JPH2 corrects RV mitochondrial morphological defects, mitochondrial fatty acid metabolism enzyme regulation, and restores the RV lipidomic signature in the monocrotaline rat model of RVD. Finally, AAV-JPH2 improves RV function without altering PAH severity, showing JPH2 provides an inotropic effect to the dysfunction RV.

18.
J Cardiovasc Aging ; 3(3)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37538440

RESUMEN

Introduction: Heart failure (HF) is the leading cause of death worldwide. Most large and small animal disease models of HF are based on surgical procedures. A common surgical technique to induce HF is transverse aortic constriction (TAC), which induces pressure overload. The conventional TAC (cTAC) procedure is a highly invasive surgery that is associated with severe inflammation and excessive perioperative deaths. Aim: To establish an improved, minimally invasive TAC (mTAC) procedure that does not require thoracotomy. Methods and results: Following anesthesia, mice were intubated, and a small incision was made at the neck and chest. After cutting the sternum about 4 mm, the aortic arch was approached without opening the pleural cavity. A suture was placed between the brachiocephalic artery and the left common carotid artery. This model was associated with low perioperative mortality and a highly reproducible constriction evidenced by an increased right-to-left carotid blood flow velocity ratio in mTAC mice (5.9 ± 0.2) vs. sham controls (1.2 ± 0.1; P < 0.001). mTAC mice exhibited progressive cardiac remodeling during the 8 weeks post-TAC, resulting in reduced left ventricular (LV) contractility, increased LV end-systolic diameter, left atrial enlargement and diastolic dysfunction, and an increased heart weight to tibia length ratio (mTAC: 15.0 ± 0.8 vs. sham: 10.1 ± 0.6; P < 0.01). Conclusion: Our data show that the mTAC procedure yields a highly reproducible phenotype consisting of LV contractile dysfunction and enlargement, combined with left atrial enlargement and diastolic dysfunction. Potential impact of the findings: This model may be used to test the molecular mechanisms underlying atrial remodeling associated with HF development or to evaluate therapeutic strategies to treat these conditions.

19.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581942

RESUMEN

Chronic kidney disease (CKD) is associated with a higher risk of atrial fibrillation (AF). The mechanistic link between CKD and AF remains elusive. IL-1ß, a main effector of NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation, is a key modulator of conditions associated with inflammation, such as AF and CKD. Circulating IL-1ß levels were elevated in patients with CKD who had AF (versus patients with CKD in sinus rhythm). Moreover, NLRP3 activity was enhanced in atria of patients with CKD. To elucidate the role of NLRP3/IL-1ß signaling in the pathogenesis of CKD-induced AF, Nlrp3-/- and WT mice were subjected to a 2-stage subtotal nephrectomy protocol to induce CKD. Four weeks after surgery, IL-1ß levels in serum and atrial tissue were increased in WT CKD (WT-CKD) mice versus sham-operated WT (WT-sham) mice. The increased susceptibility to pacing-induced AF and the longer AF duration in WT-CKD mice were associated with an abbreviated atrial effective refractory period, enlarged atria, and atrial fibrosis. Genetic inhibition of NLRP3 in Nlrp3-/- mice or neutralizing anti-IL-1ß antibodies effectively reduced IL-1ß levels, normalized left atrial dimensions, and reduced fibrosis and the incidence of AF. These data suggest that CKD creates a substrate for AF development by activating the NLRP3 inflammasome in atria, which is associated with structural and electrical remodeling. Neutralizing IL-1ß antibodies may be beneficial in preventing CKD-induced AF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Atrios Cardíacos/metabolismo , Interleucina-1beta/metabolismo
20.
Am J Transl Res ; 14(2): 1220-1233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273724

RESUMEN

Post-therapeutic relapse remains the biggest challenge to breast cancer management. The re-initiation of proliferation of dormant tumor cells in either metastatic or primary tumor location marks the final rate-limiting step of malignancy and mortality. The underlying molecular mechanisms remain poorly understood. We have recently demonstrated that KLF8 promotes breast cancer metastasis via CXCR4 upregulation. Here we report a role and mechanisms for KLF8 in driving the recurrence-like tumor outgrowth in both secondary and primary sites in a CXCR4-dependent manner. Treatment of an MDA-MB-231 breast cancer cell variant with the CXCR4 ligand, CXCL12, induces formation of filopodia in monolayer culture and filopodium-like protrusions (FLPs) in 3D culture. The FLP+ cells proliferate significantly faster than FLP- cells in the 3D culture supplemented with CXCL12. Both the FLP formation and enhanced proliferation in the 3D culture can be prevented by silencing KLF8 expression in the cells. From this prevention, the cells can be rescued by overexpressing wild-type CXCR4 but not its inactive mutant form in the cells. Overexpression of KLF8 or CXCR4 in the cells dramatically enhances their invasive outgrowth and metastasis after being implanted into immunocompromised mice. Mechanistically, we found that the activated FAK was recruited to the nascent FLPs and that proliferation of the cells was completely prevented with a FAK-specific inhibitor. Taken together, these results shed new light on the role of KLF8 in promoting breast cancer recurrence, the fatal episode of the disease, by inducing CXCR4-dependent FLP formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA