Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Theor Biol ; 456: 261-278, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30086288

RESUMEN

Vascular patterning is a key process during development and disease. The diffusive decoy receptor sVEGFR1 (sFlt1) is a known regulator of endothelial cell behavior, yet the mechanism by which it controls vascular structure is little understood. We propose computational models to shed light on how vascular patterning is guided by self-organized gradients of the VEGF/sVEGFR1 factors. We demonstrate that a diffusive inhibitor can generate structures with a dense branching morphology in models where the activator elicits directed growth. Inadequate presence of the inhibitor leads to compact growth, while excessive production of the inhibitor blocks expansion and stabilizes existing structures. Model predictions were compared with time-resolved experimental data obtained from endothelial sprout kinetics in fibrin gels. In the presence of inhibitory antibodies against VEGFR1 vascular sprout density increases while the speed of sprout expansion remains unchanged. Thus, the rate of secretion and stability of extracellular sVEGFR1 can modulate vascular sprout density.


Asunto(s)
Modelos Cardiovasculares , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Algoritmos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Neovascularización Patológica/patología , Transducción de Señal/fisiología , Esferoides Celulares/fisiología
2.
PLoS Comput Biol ; 13(11): e1005818, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29149169

RESUMEN

Resection of the bulk of a tumour often cannot eliminate all cancer cells, due to their infiltration into the surrounding healthy tissue. This may lead to recurrence of the tumour at a later time. We use a reaction-diffusion equation based model of tumour growth to investigate how the invasion front is delayed by resection, and how this depends on the density and behaviour of the remaining cancer cells. We show that the delay time is highly sensitive to qualitative details of the proliferation dynamics of the cancer cell population. The typically assumed logistic type proliferation leads to unrealistic results, predicting immediate recurrence. We find that in glioblastoma cell cultures the cell proliferation rate is an increasing function of the density at small cell densities. Our analysis suggests that cooperative behaviour of cancer cells, analogous to the Allee effect in ecology, can play a critical role in determining the time until tumour recurrence.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Biología Computacional/métodos , Glioblastoma/metabolismo , Modelos Biológicos , Recurrencia Local de Neoplasia/metabolismo , Algoritmos , Neoplasias Encefálicas/cirugía , Proliferación Celular , Difusión , Glioblastoma/cirugía , Humanos
3.
World J Pediatr ; 19(10): 992-1008, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36914906

RESUMEN

BACKGROUND: The utility of routine extensive molecular profiling of pediatric tumors is a matter of debate due to the high number of genetic alterations of unknown significance or low evidence and the lack of standardized and personalized decision support methods. Digital drug assignment (DDA) is a novel computational method to prioritize treatment options by aggregating numerous evidence-based associations between multiple drivers, targets, and targeted agents. DDA has been validated to improve personalized treatment decisions based on the outcome data of adult patients treated in the SHIVA01 clinical trial. The aim of this study was to evaluate the utility of DDA in pediatric oncology. METHODS: Between 2017 and 2020, 103 high-risk pediatric cancer patients (< 21 years) were involved in our precision oncology program, and samples from 100 patients were eligible for further analysis. Tissue or blood samples were analyzed by whole-exome (WES) or targeted panel sequencing and other molecular diagnostic modalities and processed by a software system using the DDA algorithm for therapeutic decision support. Finally, a molecular tumor board (MTB) evaluated the results to provide therapy recommendations. RESULTS: Of the 100 cases with comprehensive molecular diagnostic data, 88 yielded WES and 12 panel sequencing results. DDA identified matching off-label targeted treatment options (actionability) in 72/100 cases (72%), while 57/100 (57%) showed potential drug resistance. Actionability reached 88% (29/33) by 2020 due to the continuous updates of the evidence database. MTB approved the clinical use of a DDA-top-listed treatment in 56 of 72 actionable cases (78%). The approved therapies had significantly higher aggregated evidence levels (AELs) than dismissed therapies. Filtering of WES results for targeted panels missed important mutations affecting therapy selection. CONCLUSIONS: DDA is a promising approach to overcome challenges associated with the interpretation of extensive molecular profiling in the routine care of high-risk pediatric cancers. Knowledgebase updates enable automatic interpretation of a continuously expanding gene set, a "virtual" panel, filtered out from genome-wide analysis to always maximize the performance of precision treatment planning.


Asunto(s)
Antineoplásicos , Neoplasias , Niño , Humanos , Antineoplásicos/uso terapéutico , Resistencia a Medicamentos , Mutación , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión/métodos
4.
Diagnostics (Basel) ; 11(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34679548

RESUMEN

BACKGROUND: We present the case of a 50-year-old female whose metastatic pancreatic neuroendocrine tumor (pNET) diagnosis was delayed by the COVID-19 pandemic. The patient was in critical condition at the time of diagnosis due to the extensive tumor burden and failing liver functions. The clinical dilemma was to choose between two registered first-line molecularly-targeted agents (MTAs), sunitinib or everolimus, or to use chemotherapy to quickly reduce tumor burden. METHODS: Cell-free DNA (cfDNA) from liquid biopsy was analyzed by next generation sequencing (NGS) using a comprehensive 591-gene panel. Next, a computational method, digital drug-assignment (DDA) was deployed for rapid clinical decision support. RESULTS: NGS analysis identified 38 genetic alterations. DDA identified 6 potential drivers, 24 targets, and 79 MTAs. Everolimus was chosen for first-line therapy based on supporting molecular evidence and the highest DDA ranking among therapies registered in this tumor type. The patient's general condition and liver functions rapidly improved, and CT control revealed partial response in the lymph nodes and stable disease elsewhere. CONCLUSION: Deployment of precision oncology using liquid biopsy, comprehensive molecular profiling, and DDA make personalized first-line therapy of advanced pNET feasible in clinical settings.

5.
NPJ Precis Oncol ; 5(1): 59, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162980

RESUMEN

Precision oncology is currently based on pairing molecularly targeted agents (MTA) to predefined single driver genes or biomarkers. Each tumor harbors a combination of a large number of potential genetic alterations of multiple driver genes in a complex system that limits the potential of this approach. We have developed an artificial intelligence (AI)-assisted computational method, the digital drug-assignment (DDA) system, to prioritize potential MTAs for each cancer patient based on the complex individual molecular profile of their tumor. We analyzed the clinical benefit of the DDA system on the molecular and clinical outcome data of patients treated in the SHIVA01 precision oncology clinical trial with MTAs matched to individual genetic alterations or biomarkers of their tumor. We found that the DDA score assigned to MTAs was significantly higher in patients experiencing disease control than in patients with progressive disease (1523 versus 580, P = 0.037). The median PFS was also significantly longer in patients receiving MTAs with high (1000+ <) than with low (<0) DDA scores (3.95 versus 1.95 months, P = 0.044). Our results indicate that AI-based systems, like DDA, are promising new tools for oncologists to improve the clinical benefit of precision oncology.

6.
J Pers Med ; 10(3)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872120

RESUMEN

BACKGROUND: The anaplastic lymphoma kinase (ALK) gene fusion rearrangement is a potent oncogene, accounting for 2-7% of lung adenocarcinomas, with higher incidence (17-20%) in non-smokers. ALK-positive tumors are sensitive to ALK tyrosine kinase inhibitors (TKIs), thus ALK-positive non-small-cell lung cancer (NSCLC) is currently spearheading precision medicine in thoracic oncology, with three generations of approved ALK inhibitors in clinical practice. However, these treatments are eventually met with resistance. At the molecular level, ALK-positive NSCLC is of the lowest tumor mutational burden, which possibly accounts for the high initial response to TKIs. Nevertheless, TP53 co-mutations are relatively frequent and are associated with adverse outcome of crizotinib treatment, whereas utility of next-generation ALK inhibitors in TP53-mutant tumors is still unknown. METHODS: We report the case of an ALK-positive, TP53-mutant NSCLC patient with about five years survival on ALK TKIs with continued next-generation regimens upon progression. RESULTS: The tumor showed progression on crizotinib, but long tumor control was achieved following the incremental administration of next-generation ALK inhibitors, despite lack of evident resistance mechanisms. CONCLUSION: TP53 status should be taken into consideration when selecting ALK-inhibitor treatment for personalized therapies. In TP53-mutant tumors, switching TKI generations may overcome treatment exhaustion even in the absence of ALK-dependent resistance mechanisms.

7.
Cells ; 8(11)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671862

RESUMEN

Epithelial to mesenchymal transition (EMT) is a multipurpose process involved in wound healing, development, and certain pathological processes, such as metastasis formation. The Tks4 scaffold protein has been implicated in cancer progression; however, its role in oncogenesis is not well defined. In this study, the function of Tks4 was investigated in HCT116 colon cancer cells by knocking the protein out using the CRISPR/Cas9 system. Surprisingly, the absence of Tks4 induced significant changes in cell morphology, motility, adhesion and expression, and localization of E-cadherin, which are all considered as hallmarks of EMT. In agreement with these findings, the marked appearance of fibronectin, a marker of the mesenchymal phenotype, was also observed in Tks4-KO cells. Analysis of the expression of well-known EMT transcription factors revealed that Snail2 was strongly overexpressed in cells lacking Tks4. Tks4-KO cells showed increased motility and decreased cell-cell attachment. Collagen matrix invasion assays demonstrated the abundance of invasive solitary cells. Finally, the reintroduction of Tks4 protein in the Tks4-KO cells restored the expression levels of relevant key transcription factors, suggesting that the Tks4 scaffold protein has a specific and novel role in EMT regulation and cancer progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Neoplasias del Colon/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Invasividad Neoplásica , Transducción de Señal/genética
9.
Clin Cancer Res ; 24(15): 3729-3740, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29724868

RESUMEN

Purpose: Malignant pleural mesothelioma (MPM) is an aggressive thoracic tumor type with limited treatment options and poor prognosis. The angiokinase inhibitor nintedanib has shown promising activity in the LUME-Meso phase II MPM trial and thus is currently being evaluated in the confirmatory LUME-Meso phase III trial. However, the anti-MPM potential of nintedanib has not been studied in the preclinical setting.Experimental Design: We have examined the antineoplastic activity of nintedanib in various in vitro and in vivo models of human MPM.Results: Nintedanib's target receptors were (co)expressed in all the 20 investigated human MPM cell lines. Nintedanib inhibited MPM cell growth in both short- and long-term viability assays. Reduced MPM cell proliferation and migration and the inhibition of Erk1/2 phosphorylation were also observed upon nintedanib treatment in vitro Additive effects on cell viability were detected when nintedanib was combined with cisplatin, a drug routinely used for systemic MPM therapy. In an orthotopic mouse model of human MPM, survival of animals receiving nintedanib per os showed a favorable trend, but no significant benefit. Nintedanib significantly reduced tumor burden and vascularization and prolonged the survival of mice when it was administered intraperitoneally. Importantly, unlike bevacizumab, nintedanib demonstrated significant in vivo antivascular and antitumor potential independently of baseline VEGF-A levels.Conclusions: Nintedanib exerts significant antitumor activity in MPM both in vitro and in vivo These data provide preclinical support for the concept of LUME-Meso trials evaluating nintedanib in patients with unresectable MPM. Clin Cancer Res; 24(15); 3729-40. ©2018 AACR.


Asunto(s)
Indoles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Pleurales/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Fosforilación/efectos de los fármacos , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
BMC Syst Biol ; 8: 112, 2014 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-25267505

RESUMEN

BACKGROUND: The maintenance of stem cell pluripotency is controlled by a core cluster of transcription factors, NANOG, OCT4 and SOX2 - genes that jointly regulate each other's expression. The expression of some of these genes, especially of Nanog, is heterogeneous in a population of undifferentiated stem cells in culture. Transient changes in expression levels, as well as heterogeneity of the population is not restricted to this core regulator, but involve a large number of other genes that include growth factors, transcription factors or signal transduction proteins. RESULTS: As the molecular mechanisms behind NANOG expression heterogeneity is not yet understood, we explore by computational modeling the core transcriptional regulatory circuit and its input from autocrine FGF signals that act through the MAP kinase cascade. We argue that instead of negative feedbacks within the core NANOG-OCT4-SOX2 transcriptional regulatory circuit, autocrine signaling loops such as the Esrrb - FGF - ERK feedback considered here are likely to generate distinct sub-states within the "ON" state of the core Nanog switch. Thus, the experimentally observed fluctuations in Nanog transcription levels are best explained as noise-induced transitions between negative feedback-generated sub-states. We also demonstrate that ERK phosphorilation is altered and being anti-correlated with fluctuating Nanog expression - in accord with model simulations. Our modeling approach assigns an empirically testable function to the transcriptional regulators Klf4 and Esrrb, and predict differential regulation of FGF family members. CONCLUSIONS: We argue that slow fluctuations in Nanog expression likely reflect individual cell-specific changes in parameters of an autocrine feedback loop, such as changes in ligand capture efficiency, receptor numbers or the presence of crosstalks within the MAPK signal transduction pathway. We proposed a model that operates with binding affinities of multiple transcriptional regulators of pluripotency, and the activity of an autocrine signaling pathway. The resulting model produces varied expression levels of several components of pluripotency regulation, largely consistent with empirical observations reported previously and in this present work.


Asunto(s)
Comunicación Autocrina/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Animales , Biología Computacional , Citometría de Flujo , Factor 4 Similar a Kruppel , Mediciones Luminiscentes , Ratones , Proteína Homeótica Nanog , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA