RESUMEN
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
RESUMEN
Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes1-4. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features. Here we describe the development of a mitochondrial genome constraint model and its application to the Genome Aggregation Database (gnomAD), a large-scale population dataset that reports mtDNA variation across 56,434 human participants5. Specifically, we analyse constraint by comparing the observed variation in gnomAD to that expected under neutrality, which was calculated using a mtDNA mutational model and observed maximum heteroplasmy-level data. Our results highlight strong depletion of expected variation, which suggests that many deleterious mtDNA variants remain undetected. To aid their discovery, we compute constraint metrics for every mitochondrial protein, tRNA and rRNA gene, which revealed a range of intolerance to variation. We further characterize the most constrained regions within genes through regional constraint and identify the most constrained sites within the entire mitochondrial genome through local constraint, which showed enrichment of pathogenic variation. Constraint also clustered in three-dimensional structures, which provided insight into functionally important domains and their disease relevance. Notably, we identify constraint at often overlooked sites, including in rRNA and noncoding regions. Last, we demonstrate that these metrics can improve the discovery of deleterious variation that underlies rare and common phenotypes.
RESUMEN
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Multiómica , Mutación , Proteínas Ribosómicas/genéticaRESUMEN
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Asunto(s)
Enfermedades Neuromusculares , Calidad de Vida , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Humanos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genéticaRESUMEN
Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have ignored the mitochondrial genome (mtDNA). Here, we present a pipeline to call mtDNA variants that addresses three technical challenges: (1) detecting homoplasmic and heteroplasmic variants, present, respectively, in all or a fraction of mtDNA molecules; (2) circular mtDNA genome; and (3) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies. Furthermore, we report variants with heteroplasmy ≥10%. We applied this pipeline to 56,434 whole-genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele frequencies are freely accessible and will aid in diagnostic interpretation and research studies.
Asunto(s)
ADN Mitocondrial , Genoma Mitocondrial , Núcleo Celular/genética , ADN Mitocondrial/genética , Frecuencia de los Genes , Genoma , Humanos , Mitocondrias/genética , Análisis de Secuencia de ADNRESUMEN
PURPOSE: Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial Flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples. METHODS: A total of 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mitochondrial DNA (mtDNA) sequencing or genome sequencing. RESULTS: Diagnostic yield was 55% (n = 77) with variants in nuclear (n = 37) and mtDNA (n = 18) MD genes, as well as phenocopy genes (n = 22). A nuclear gene etiology was identified in 77% of diagnoses, irrespective of disease onset. Diagnostic rates were higher in pediatric-onset (71%) than adult-onset (31%) cases and comparable in children with non-European (78%) vs European (67%) ancestry. For children, higher MNC scores correlated with increased diagnostic yield and fewer diagnoses in phenocopy genes. Additionally, 3 adult patients had a mtDNA deletion discovered in skeletal muscle that was not initially identified in blood. CONCLUSION: Genomic sequencing from blood can simplify the diagnostic pathway for individuals living with suspected MD, especially those with childhood onset diseases and high MNC scores.
RESUMEN
SUMMARY: We present MitoVisualize, a new tool for analysis of the human mitochondrial DNA (mtDNA). MitoVisualize enables visualization of: (i) the position and effect of variants in mitochondrial transfer RNA and ribosomal RNA secondary structures alongside curated variant annotations, (ii) data across RNA structures, such as to show all positions with disease-associated variants or with post-transcriptional modifications and (iii) the position of a base, gene or region in the circular mtDNA map, such as to show the location of a large deletion. All visualizations can be easily downloaded as figures for reuse. MitoVisualize can be useful for anyone interested in exploring mtDNA variation, though is designed to facilitate mtDNA variant interpretation in particular. AVAILABILITY AND IMPLEMENTATION: MitoVisualize can be accessed via https://www.mitovisualize.org/. The source code is available at https://github.com/leklab/mito_visualize/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
ADN Mitocondrial , Programas Informáticos , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , ARN/química , ARN/genética , ARN Mitocondrial/genéticaRESUMEN
PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.
Asunto(s)
Exoma , Genómica , Estudios de Asociación Genética , Humanos , Fenotipo , Secuenciación del ExomaRESUMEN
The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.
Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/enzimología , Masculino , Mitocondrias/genética , Fosforilación Oxidativa , Proteómica , Empalme del ARN/genética , Análisis de Secuencia de ADNRESUMEN
Leigh syndrome is a mitochondrial disease caused by pathogenic variants in over 85 genes. Whole exome sequencing of a patient with Leigh-like syndrome identified homozygous protein-truncating variants in two genes associated with Leigh syndrome; a reported pathogenic variant in PDHX (NP_003468.2:p.(Arg446*)), and an uncharacterized variant in complex I (CI) assembly factor TIMMDC1 (NP_057673.2:p.(Arg225*)). The TIMMDC1 variant was predicted to truncate 61 amino acids at the C-terminus and functional studies demonstrated a hypomorphic impact of the variant on CI assembly. However, the mutant protein could still rescue CI assembly in TIMMDC1 knockout cells and the patient's clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Our data suggest that the hypomorphic effect of the TIMMDC1 protein-truncating variant does not constitute a dual diagnosis in this individual. We recommend cautious assessment of variants in the C-terminus of TIMMDC1 and emphasize the need to consider the caveats detailed within the American College of Medical Genetics and Genomics (ACMG) criteria when assessing variants.
Asunto(s)
Enfermedad de Leigh/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Eliminación de Secuencia , Diagnóstico Precoz , Técnicas de Inactivación de Genes , Células HEK293 , Homocigoto , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejo Piruvato Deshidrogenasa/genética , Secuenciación del ExomaRESUMEN
PURPOSE: Limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous category of autosomal inherited muscle diseases. Many genes causing LGMD have been identified, and clinical trials are beginning for treatment of some genetic subtypes. However, even with the gene-level mechanisms known, it is still difficult to get a robust and generalizable prevalence estimation for each subtype due to the limited amount of epidemiology data and the low incidence of LGMDs. METHODS: Taking advantage of recently published exome and genome sequencing data from the general population, we used a Bayesian method to develop a robust disease prevalence estimator. RESULTS: This method was applied to nine recessive LGMD subtypes. The estimated disease prevalence calculated by this method was largely comparable with published estimates from epidemiological studies; however, it highlighted instances of possible underdiagnosis for LGMD2B and 2L. CONCLUSION: The increasing size of aggregated population variant databases will allow for robust and reproducible prevalence estimates of recessive disease, which is critical for the strategic design and prioritization of clinical trials.
Asunto(s)
Distrofia Muscular de Cinturas/epidemiología , Distrofia Muscular de Cinturas/genética , Teorema de Bayes , Mapeo Cromosómico , Bases de Datos Genéticas , Exoma , Femenino , Humanos , Masculino , Mutación , PrevalenciaRESUMEN
Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.
Asunto(s)
Adenosina Trifosfatasas/genética , Cerebelo/anomalías , ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Malformaciones del Sistema Nervioso/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Consanguinidad , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/fisiopatología , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/fisiopatologíaRESUMEN
Aims: The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results: Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion: We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.
Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Aterosclerosis/genética , Proteínas Portadoras/genética , HDL-Colesterol/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Transportador 1 de Casete de Unión a ATP/biosíntesis , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteínas Portadoras/biosíntesis , Línea Celular , Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/biosíntesis , ARN/genéticaRESUMEN
Leigh syndrome is the most common pediatric presentation of mitochondrial disease. This neurodegenerative disorder is genetically heterogeneous, and to date pathogenic mutations in >75 genes have been identified, encoded by 2 genomes (mitochondrial and nuclear). More than one-third of these disease genes have been characterized in the past 5 years alone, reflecting the significant advances made in understanding its etiological basis. We review the diverse biochemical and genetic etiology of Leigh syndrome and associated clinical, neuroradiological, and metabolic features that can provide clues for diagnosis. We discuss the emergence of genotype-phenotype correlations, insights gleaned into the molecular basis of disease, and available therapeutic options.
Asunto(s)
Enfermedad de Leigh/genética , Animales , Humanos , Enfermedad de Leigh/patología , Enfermedad de Leigh/fisiopatologíaRESUMEN
BACKGROUND: Recessive pathogenic variants in LAMA2 resulting in complete or partial loss of laminin α2 protein cause congenital muscular dystrophy (LAMA2 CMD). The prevalence of LAMA2 CMD has been estimated by epidemiological studies to lie between 1.36-20 cases per million. However, prevalence estimates from epidemiological studies are vulnerable to inaccuracies owing to challenges with studying rare diseases. Population genetic databases offer an alternative method for estimating prevalence. OBJECTIVE: We aim to use population allele frequency data for reported and predicted pathogenic variants to estimate the birth prevalence of LAMA2 CMD. METHODS: A list of reported pathogenic LAMA2 variants was compiled from public databases, and supplemented with predicted loss of function (LoF) variants in the Genome Aggregation Database (gnomAD). gnomAD allele frequencies for 273 reported pathogenic and predicted LoF LAMA2 variants were used to calculate disease prevalence using a Bayesian methodology. RESULTS: The world-wide birth prevalence of LAMA2 CMD was estimated to be 8.3 per million (95% confidence interval (CI) 6.27 -10.5 per million). The prevalence estimates for each population in gnomAD varied, ranging from 1.79 per million in East Asians (95% CI 0.63 -3.36) to 10.1 per million in Europeans (95% CI 6.74 -13.9). These estimates were generally consistent with those from epidemiological studies, where available. CONCLUSIONS: We provide robust world-wide and population-specific birth prevalence estimates for LAMA2 CMD, including for non-European populations in which LAMA2 CMD prevalence hadn't been studied. This work will inform the design and prioritization of clinical trials for promising LAMA2 CMD treatments.
Asunto(s)
Distrofias Musculares , Humanos , Teorema de Bayes , Prevalencia , Distrofias Musculares/epidemiología , Distrofias Musculares/genética , Distrofias Musculares/patología , Laminina/genética , AlelosRESUMEN
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for over 99.8% of all possible coding single nucleotide variants and resolved 310 clinically reported variants of uncertain significance with high confidence, enhancing clinical variant interpretation in dystroglycanopathies. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
RESUMEN
Mitochondria carry their own circular genome and disruption of the mitochondrial genome is associated with various aging-related diseases. Unlike the nuclear genome, mitochondrial DNA (mtDNA) can be present at 1000 s to 10,000 s copies in somatic cells and variants may exist in a state of heteroplasmy, where only a fraction of the DNA molecules harbors a particular variant. We quantify mtDNA heteroplasmy in 194,871 participants in the UK Biobank and find that heteroplasmy is associated with a 1.5-fold increased risk of all-cause mortality. Additionally, we functionally characterize mtDNA single nucleotide variants (SNVs) using a constraint-based score, mitochondrial local constraint score sum (MSS) and find it associated with all-cause mortality, and with the prevalence and incidence of cancer and cancer-related mortality, particularly leukemia. These results indicate that mitochondria may have a functional role in certain cancers, and mitochondrial heteroplasmic SNVs may serve as a prognostic marker for cancer, especially for leukemia.
Asunto(s)
Leucemia , Mitocondrias , Humanos , Mitocondrias/genética , ADN Mitocondrial/genética , Heteroplasmia , Leucemia/genética , MutaciónRESUMEN
BACKGROUND: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. METHODS: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. FINDINGS: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. CONCLUSIONS: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. FUNDING: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.
Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Enfermedades Mitocondriales , ATPasas Asociadas con Actividades Celulares Diversas/genética , Australia , Niño , Humanos , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Estados UnidosRESUMEN
Objectives: Mitochondrial methionyl-tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis. Pathogenic variants in MTFMT have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi-allelic pathogenic variants in MTFMT. Methods: Retrospective cohort study combining new cases and previously published cases. Results: Thirty-eight patients with pathogenic variants in MTFMT were identified, including eight new cases. The median age of presentation was 14 months (range: birth to 17 years, interquartile range [IQR] 4.5 years), with developmental delay and motor symptoms being the most frequent initial manifestation. Twenty-nine percent of the patients survived into adulthood. MRI headings in MTFMT pathogenic variants included symmetrical basal ganglia changes (62%), periventricular and subcortical white matter abnormalities (55%), and brainstem lesions (48%). Isolated complex I and combined respiratory chain deficiencies were identified in 31% and 59% of the cases, respectively. Reduction of the mitochondrial complex I and complex IV subunits was identified in the fibroblasts (13/13). Sixteen pathogenic variants were identified, of which c.626C>T was the most common. Seventy-four percent of the patients were alive at their last clinical review (median 6.8 years, range: 14 months to 31 years, IQR 14.5 years). Interpretation: Patients that harbour pathogenic variants in MTFMT have a milder clinical phenotype and disease progression compared to LS caused by other nuclear defects. Fibroblasts may preclude the need for muscle biopsy, to prove causality of any novel variant.