Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34326534

RESUMEN

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Asunto(s)
Proteínas de Unión al ADN/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Inflamatorias del Intestino/genética , Macrófagos/inmunología , Factores de Transcripción/genética , Animales , Calgranulina A/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Enfermedades Autoinflamatorias Hereditarias/inmunología , Enfermedades Autoinflamatorias Hereditarias/patología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Lipocalina 2/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/inmunología , Transcripción Genética/genética , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/metabolismo
2.
Cell ; 159(7): 1563-77, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525875

RESUMEN

The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify a mechanism by which mitochondria and downstream proapoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a proinflammatory type of cell death.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Animales , ADN Mitocondrial/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Virosis/inmunología
3.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772452

RESUMEN

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Asunto(s)
Complejo 2 de Proteína Adaptadora , Endocitosis , Paraplejía Espástica Hereditaria , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Complejo 2 de Proteína Adaptadora/genética , Endocitosis/genética , Endocitosis/fisiología , Mutación/genética , Mutación Missense , Neuronas/metabolismo , Neuronas/patología , Linaje , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Xenopus
4.
J Clin Immunol ; 44(2): 44, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231408

RESUMEN

Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.


Asunto(s)
Artritis , Síndrome de Behçet , Productos Biológicos , Enfermedades Inflamatorias del Intestino , Masculino , Humanos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/genética , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/genética , Artralgia , Proteínas de Unión al ADN , Factores de Transcripción/genética
5.
Genet Med ; 26(2): 101023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947183

RESUMEN

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Asunto(s)
Trastornos del Neurodesarrollo , Reinfección , Humanos , Leucocitos Mononucleares , Síndrome , Fenotipo , Arritmias Cardíacas/genética , Trastornos del Neurodesarrollo/genética , Moléculas de Adhesión Celular/genética , Proteínas de la Matriz Extracelular/genética
6.
Clin Genet ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774940

RESUMEN

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.

7.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
8.
Am J Med Genet A ; 191(3): 760-769, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495114

RESUMEN

Arthrogryposis multiplex congenita (AMC) [also known as multiple joints contracture or Fetal Akinesia Deformation Sequence (FADS)] is etiologically a heterogeneous condition with an estimated incidence of approximately 1 in 3000 live births and much higher incidence when prenatally diagnosed cases are included. The condition can be acquired or secondary to fetal exposures and can also be caused by a variety of single-gene disorders affecting the brain, spinal cord, peripheral nerves, neuromuscular junction, muscle, and a variety of disorders affecting the connective tissues (Niles et al., Prenatal Diagnosis, 2019; 39:720-731). The introduction of next-generation gene sequencing uncovered many genes and causative variants of AMC but also identified genes that cause both dominant and recessive inherited conditions with the variability of clinical manifestations depending on the genes and variants. Molecular diagnosis in these cases is not only important for prognostication but also for the determination of recurrence risk and for providing reproductive options including preimplantation and prenatal diagnosis. TTN, the largest known gene in the human genome, has been known to be associated with autosomal dominant dilated cardiomyopathy. However, homozygote and compound heterozygote pathogenic variants with recessive inheritance have rarely been reported. We report the effect of recessive variants located within the fetal IC and/or N2BA isoforms in association with severe FADS in three families. All parents were healthy obligate carriers and none of them had cardiac or skeletal muscle abnormalities. This report solidifies FADS as an alternative phenotypic presentation associated with homozygote/compound heterozygous pathogenic variants in the TTN.


Asunto(s)
Artrogriposis , Embarazo , Femenino , Humanos , Artrogriposis/diagnóstico , Artrogriposis/genética , Diagnóstico Prenatal , Homocigoto , Atención Prenatal , Síndrome , Conectina/genética
9.
Mol Biol Rep ; 50(12): 9963-9970, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897612

RESUMEN

BACKGROUND: Bardet-Biedl Syndrome (BBS) is a rare (1:13,500-1-160,000) heterogeneous congenital disorder, characterized by postaxial polydactyly, obesity, hypogonadism, rod-cone dystrophy, cognitive impairment, and renal abnormalities (renal cystic dysplasia, anatomical malformation). To date about twenty-five genes have been identified to cause BBS, which accounts for about 80% of BBS diagnosis. METHODS: In the current study, we have performed mutational screening of four Pakistani consanguineous families (A-D) with clinical manifestation of BBS by microsatellite-based genotyping and whole exome sequencing. RESULTS: Analysis of the data revealed four variants, including a novel/unique inheritance pattern of compound heterozygous variants, p.(Ser40*) and p.(Thr259Leufs*21), in MKKS gene, novel homozygous variant, p.(Gly251Val)] in BBS7 gene and two previously reported p.(Thr259Leufs*21) in MKKS and p.(Met1Lys) in BBS5 gene. The variants were found segregated with the disorder within the families. CONCLUSION: The study not only expanded mutations spectrum in the BBS genes, but this will facilitate diagnosis and genetic counselling of families carrying BBS related phenotypes in Pakistani population.


Asunto(s)
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Consanguinidad , Linaje , Análisis Mutacional de ADN , Mutación/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión a Fosfato
10.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32196547

RESUMEN

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Asunto(s)
Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Anomalías Craneofaciales/genética , Ectropión/genética , Cardiopatías Congénitas/genética , Anomalías Dentarias/genética , Adolescente , Adulto , Animales , Anodoncia/diagnóstico por imagen , Anodoncia/genética , Anodoncia/fisiopatología , Niño , Preescolar , Labio Leporino/diagnóstico por imagen , Labio Leporino/fisiopatología , Fisura del Paladar/diagnóstico por imagen , Fisura del Paladar/fisiopatología , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/fisiopatología , Modelos Animales de Enfermedad , Ectropión/diagnóstico por imagen , Ectropión/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Ratones , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/fisiopatología , Xenopus , Adulto Joven , Catenina delta
11.
Am J Med Genet A ; 188(10): 2869-2878, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899841

RESUMEN

The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios de Cohortes , Pruebas Genéticas , Humanos , Fenotipo , Estudios Retrospectivos
12.
J Med Genet ; 58(7): 453-464, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32631816

RESUMEN

BACKGROUND: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS: Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS: Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION: These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.


Asunto(s)
Ciliopatías/genética , Anomalías Congénitas/genética , Proteínas de la Membrana/genética , Mutación , Proteínas Supresoras de Tumor/genética , Animales , Encéfalo/patología , Niño , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Feto/anomalías , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/metabolismo , Humanos , Riñón/patología , Masculino , Linaje , Transducción de Señal , Secuenciación del Exoma , Xenopus
13.
S D Med ; 75(6): 268-272, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36206568

RESUMEN

OBJECTIVE: To determine the yield of early endotracheal aspirate cultures in mechanically ventilated pediatric patients with acute respiratory failure due to acute respiratory tract infection and endeavor to guide antibiotic choice in acute respiratory failure with concern for infectious etiology. RESULTS: One-hundred ten admissions were included. Of those samples, 61 percent (67 out of 110) had bacterial growth in tracheal aspirate samples. Ninety percent (99 out of 110) patients have received antibiotics and in 47 percent (53 out of 110) antibiotics were optimized or discontinued according to the culture results. There were no difference in duration of mechanical ventilation or PICU stay in patients with positive versus negative cultures (p: 0.613, P: 0.337). CONCLUSIONS: Our study shows a high yield of positive tracheal aspirate cultures in infants, children and adolescents with acute respiratory failure. The cultures identify common organisms, helps to guide initial antibiotics choice, as well as later optimization or antibiotic discontinuation.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Infecciones del Sistema Respiratorio , Adolescente , Antibacterianos/uso terapéutico , Niño , Humanos , Lactante , Respiración Artificial/efectos adversos , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/etiología , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/diagnóstico
14.
Mol Genet Genomics ; 296(4): 823-836, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33876311

RESUMEN

Next-generation sequencing platforms are being increasingly applied in clinical genetic settings for evaluation of families with suspected heritable disease. These platforms potentially improve the diagnostic yield beyond that of disease-specific targeted gene panels, but also increase the number of rare or novel genetic variants that may confound precise diagnostics. Here, we describe a functional testing approach used to interpret the results of whole exome sequencing (WES) in a family presenting with syncope and sudden death. One individual had a prolonged QT interval on electrocardiogram (ECG) and carried a diagnosis of long QT syndrome (LQTS), but a second individual did not meet criteria for LQTS. Filtering WES results for uncommon variants with arrhythmia association identified four for further analyses. In silico analyses indicated that two of these variants, KCNH2 p.(Cys555Arg) and KCNQ1 p.(Arg293Cys), were likely to be causal in this family's LQTS. We subsequently performed functional characterization of these variants in a heterologous expression system. The expression of KCNQ1-Arg293Cys did not show a deleterious phenotype but KCNH2-Cys555Arg demonstrated a loss-of-function phenotype that was partially dominant. Our stepwise approach identified a precise genetic etiology in this family, which resulted in the establishment of a LQTS diagnosis in the second individual as well as an additional asymptomatic family member, enabling personalized clinical management. Given its ability to aid in the diagnosis, the application of functional characterization should be considered as a value adjunct to in silico analyses of WES.


Asunto(s)
Canal de Potasio ERG1/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Proteínas Quinasas Activadas por AMP/genética , Sustitución de Aminoácidos/genética , Análisis Mutacional de ADN/métodos , Electrocardiografía , Familia , Femenino , Pruebas Genéticas/métodos , Células HEK293 , Pruebas de Función Cardíaca/métodos , Humanos , Canal de Potasio KCNQ1/genética , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética , Secuenciación del Exoma
15.
Am J Med Genet A ; 185(4): 1076-1080, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438828

RESUMEN

De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/patología , Discapacidades del Desarrollo/genética , Neuropéptidos/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Niño , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Humanos , Larva/genética , Masculino , Fenotipo , Convulsiones/genética , Convulsiones/patología , Xenopus laevis/genética
16.
J Hum Genet ; 65(10): 911-915, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32435055

RESUMEN

Two variants in the ubiquitously expressed NHLRC2 gene have been reported to cause a lethal fibrotic cerebropulmonary disease termed fibrosis, neurodegeneration, and cerebral angiomatosis (FINCA) syndrome in three Finnish children. Our objective was to determine the genetic basis of disease in a new patient with clinical features of FINCA syndrome using whole-exome sequencing (WES) and confirmation by Sanger sequencing. The patient has one known and one novel variant in NHLRC2 (c.442T>G, p.D148Y and c.428C>A, p.H143P, respectively). p.H143P is extremely rare and is not present in the gnomAD database of >140,000 allele sequences from healthy humans. Both variants affect the highly conserved N-terminal thioredoxin (Trx)-like domain of NHLRC2 and are predicted to be damaging. We conclude that a compound heterozygous combination of a known and a novel variant in NHLRC2 causes FINCA syndrome in a 2-year-old Ukrainian patient, underscoring the importance of NHLRC2 as a central regulator of fibrosis.


Asunto(s)
Angiomatosis/genética , Neoplasias Encefálicas/genética , Cardiomegalia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Pulmonares/genética , Enfermedades Neurodegenerativas/genética , Mutación Puntual , Secuencia de Aminoácidos , Cardiomegalia/patología , Preescolar , Fibrosis , Heterocigoto , Humanos , Masculino , Modelos Moleculares , Linaje , Conformación Proteica , Dominios Proteicos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Síndrome , Secuenciación del Exoma
17.
Am J Med Genet A ; 182(10): 2291-2296, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32812332

RESUMEN

Recessive variants in the GLDN gene, which encodes the gliomedin protein and is involved in nervous system development, have recently been associated with Arthrogryposis Multiplex Congenita (AMC), a heterogenous condition characterized by congenital contractures of more than one joint. Two cohorts of patients with GLDN-associated AMC have previously been described, evolving the understanding of the condition from lethal to survivable with the provision of significant neonatal support. Here, we describe one additional patient currently living with the syndrome, having one novel variant, p.Leu365Phe, for which we provide functional data supporting its pathogenicity. We additionally provide experimental data for four other previously reported variants lacking functional evidence, including p.Arg393Lys, the second variant present in our patient. We discuss unique and defining clinical features, adding calcium-related findings which appear to be recurrent in the GLDN cohort. Finally, we compare all previously reported patients and draw new conclusions about scope of illness, with emphasis on the finding of pulmonary hypoplasia, suggesting that AMC secondary to GLDN variants may be best fitted under the umbrella of fetal akinesia deformation sequence (FADS).


Asunto(s)
Artrogriposis/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Artrogriposis/patología , Preescolar , Femenino , Humanos , Mutación , Linaje
18.
Am J Med Genet A ; 182(9): 2049-2057, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32656949

RESUMEN

Heterozygous variants in the DYNC1H1 gene have been associated chiefly with intellectual disability (ID), malformations in cortical development (MCD), spinal muscular atrophy (SMA), and Charcot-Marie-Tooth axonal type 20 (CMT), with fewer reports describing other intersecting phenotypes. To better characterize the variable syndromes associated with DYNC1H1, we undertook a detailed analysis of reported patients in the medical literature through June 30, 2019. In sum we identified 200 patients from 143 families harboring 103 different DYNC1H1 variants, and added reports for four unrelated patients identified at our center, three with novel variants. The most common features associated with DYNC1H1 were neuromuscular (NM) disease (largely associated with variants in the stem domain), ID with MCD (largely associated with variants in the motor domain), or a combination of these phenotypes. Despite these trends, exceptions are noted throughout. Overall, DYNC1H1 is associated with variable neurodevelopmental and/or neuromuscular phenotypes that overlap. To avoid confusion DYNC1H1 disorders may be best categorized at this time by more general descriptions rather than phenotype-specific nomenclature such as SMA or CMT. We therefore propose the terms: DYNC1H1-related NM disorder, DYNC1H1-related CNS disorder, and DYNC1H1-related combined disorder. Our single center's experience may be evidence that disease-causing variants in this gene are more prevalent than currently recognized.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Dineínas Citoplasmáticas/genética , Predisposición Genética a la Enfermedad , Atrofia Muscular Espinal/genética , Adolescente , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Atrofia Muscular Espinal/patología , Mutación Missense/genética , Fenotipo
19.
J Med Genet ; 56(2): 113-122, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30323019

RESUMEN

BACKGROUND: Early infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies. OBJECTIVES: This study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative. METHODS: We used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles. RESULTS: We identified novel de novo variants in neuronal differentiation factor 2 (NEUROD2) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients' condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic. CONCLUSION: This study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neuropéptidos/genética , Espasmos Infantiles/genética , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Preescolar , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Larva/genética , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/etiología , Secuenciación del Exoma , Xenopus laevis/embriología , Xenopus laevis/genética
20.
J Allergy Clin Immunol ; 143(1): 258-265, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29935219

RESUMEN

BACKGROUND: The lack of pathogen-protective, isotype-switched antibodies in patients with common variable immunodeficiency (CVID) suggests germinal center (GC) hypoplasia, yet a subset of patients with CVID is paradoxically affected by autoantibody-mediated autoimmune cytopenias (AICs) and lymphadenopathy. OBJECTIVE: We sought to compare the physical characteristics and immunologic output of GC responses in patients with CVID with AIC (CVID+AIC) and without AIC (CVID-AIC). METHODS: We analyzed GC size and shape in excisional lymph node biopsy specimens from 14 patients with CVID+AIC and 4 patients with CVID-AIC. Using paired peripheral blood samples, we determined how AICs specifically affected B-and T-cell compartments and antibody responses in patients with CVID. RESULTS: We found that patients with CVID+AIC displayed irregularly shaped hyperplastic GCs, whereas GCs were scarce and small in patients with CVID-AIC. GC hyperplasia was also evidenced by an increase in numbers of circulating follicular helper T cells, which correlated with decreased regulatory T-cell frequencies and function. In addition, patients with CVID+AIC had serum endotoxemia associated with a dearth of isotype-switched memory B cells that displayed significantly lower somatic hypermutation frequencies than their counterparts with CVID-AIC. Moreover, IgG+ B cells from patients with CVID+AIC expressed VH4-34-encoded antibodies with unmutated Ala-Val-Tyr and Asn-His-Ser motifs, which recognize both erythrocyte I/i self-antigens and commensal bacteria. CONCLUSIONS: Patients with CVID+AIC do not contain mucosal microbiota and exhibit hyperplastic yet inefficient GC responses that favor the production of untolerized IgG+ B-cell clones that recognize both commensal bacteria and hematopoietic I/i self-antigens.


Asunto(s)
Autoanticuerpos/inmunología , Linfocitos B/inmunología , Inmunodeficiencia Variable Común/inmunología , Centro Germinal/inmunología , Inmunoglobulina G/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Anciano , Linfocitos B/patología , Biopsia , Niño , Inmunodeficiencia Variable Común/patología , Femenino , Centro Germinal/patología , Humanos , Hiperplasia , Masculino , Persona de Mediana Edad , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA