Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pharmacol Exp Ther ; 374(3): 354-365, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32561686

RESUMEN

The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.


Asunto(s)
Encéfalo/efectos de los fármacos , Liposomas/administración & dosificación , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Péptidos de Penetración Celular/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Femenino , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Distribución Tisular/fisiología , Transferrina/administración & dosificación
2.
Nanomedicine ; 23: 102112, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669083

RESUMEN

Combination therapy has emerged as an efficient way to deliver chemotherapeutics for treatment of glioblastoma. It provides collaborative approach of targeting cancer cells by acting via multiple mechanisms, thereby reducing drug resistance. However, the presence of impermeable blood brain barrier (BBB) restricts the delivery of chemotherapeutic drugs into the brain. To overcome this limitation, we designed a dual functionalized liposomes by modifying their surface with transferrin (Tf) and a cell penetrating peptide (CPP) for receptor and adsorptive mediated transcytosis, respectively. In this study, we used two different CPPs (based on physicochemical properties) and investigated the influence of insertion of CPP to Tf-liposomes on biocompatibility, cellular uptake, and transport across the BBB both in vitro and in vivo. The biodistribution profile of Tf-CPP liposomes showed more than 10 and 2.7 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively as compared to free drugs with no signs of toxicity.


Asunto(s)
Antineoplásicos , Barrera Hematoencefálica/metabolismo , Péptidos de Penetración Celular , Doxorrubicina , Sistemas de Liberación de Medicamentos , Clorhidrato de Erlotinib , Transferrina , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Barrera Hematoencefálica/patología , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Clorhidrato de Erlotinib/química , Clorhidrato de Erlotinib/farmacocinética , Clorhidrato de Erlotinib/farmacología , Femenino , Liposomas , Masculino , Ratones , Ratones Desnudos , Transferrina/química , Transferrina/farmacocinética , Transferrina/farmacología
3.
Int J Mol Sci ; 17(6)2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27231900

RESUMEN

The challenge of effectively delivering therapeutic agents to brain has led to an entire field of active research devoted to overcome the blood brain barrier (BBB) and efficiently deliver drugs to brain. This review focusses on exploring the facets of a novel platform designed for the delivery of drugs to brain. The platform was constructed based on the hypothesis that a combination of receptor-targeting agent, like transferrin protein, and a cell-penetrating peptide (CPP) will enhance the delivery of associated therapeutic cargo across the BBB. The combination of these two agents in a delivery vehicle has shown significantly improved (p < 0.05) translocation of small molecules and genes into brain as compared to the vehicle with only receptor-targeting agents. The comprehensive details of the uptake mechanisms and properties of various CPPs are illustrated here. The application of this technology, in conjunction with nanotechnology, can potentially open new horizons for the treatment of central nervous system disorders.


Asunto(s)
Péptidos de Penetración Celular/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Transferrina/metabolismo , Barrera Hematoencefálica/química , Permeabilidad de la Membrana Celular , Péptidos de Penetración Celular/química , Receptores de Transferrina/metabolismo
4.
J Microencapsul ; 31(6): 590-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24697190

RESUMEN

CONTEXT: Solid lipid nanoparticles (SLNs) can efficiently and efficaciously incorporate anti-cancer agents. OBJECTIVE: To prepare and characterise tamoxifen (TAM)-loaded SLNs. MATERIALS AND METHODS: Glyceryl monostearate, Tween-80, and trehalose were used in SLNs. SLNs were tested via dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). RESULTS: Characterisation studies revealed SLNs of about 540 nm with a negative surface charge and confirmed the entrapment of TAM in the SLNs. The entrapment efficiency was estimated to be 60%. DISCUSSION: The in vitro drug release profile demonstrated a gradual increase followed by a release plateau for several days. A drug concentration-dependent increase in cytotoxic activity was observed when the SLNs were evaluated in cell cultures. CONCLUSION: Biocompatible and stable lyophilised SLNs were successfully prepared and found to possess properties that may be utilised in an anti-cancer drug delivery system.


Asunto(s)
Antineoplásicos Hormonales , Glicéridos , Ensayo de Materiales , Nanopartículas/química , Polisorbatos , Tamoxifeno , Trehalosa , Antineoplásicos Hormonales/química , Antineoplásicos Hormonales/farmacocinética , Antineoplásicos Hormonales/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Glicéridos/química , Glicéridos/farmacocinética , Glicéridos/farmacología , Humanos , Polisorbatos/química , Polisorbatos/farmacocinética , Polisorbatos/farmacología , Tamoxifeno/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacología , Trehalosa/química , Trehalosa/farmacocinética , Trehalosa/farmacología
5.
AAPS PharmSciTech ; 15(6): 1498-508, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25035070

RESUMEN

The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Portadores de Fármacos , Fluorouracilo/química , Glicéridos/química , Nanopartículas , Tecnología Farmacéutica/métodos , Temperatura , Antimetabolitos Antineoplásicos/farmacología , Células CACO-2 , Rastreo Diferencial de Calorimetría , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Nanotecnología , Tamaño de la Partícula , Transición de Fase , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
6.
Colloids Surf B Biointerfaces ; 173: 27-35, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261346

RESUMEN

Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p < 0.05) higher apoptosis in U87 cells. Significantly (p < 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Clorhidrato de Erlotinib/farmacología , Liposomas/química , Neuroglía/efectos de los fármacos , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Quitosano/química , Doxorrubicina/química , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Clorhidrato de Erlotinib/química , Glioblastoma/irrigación sanguínea , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Liposomas/metabolismo , Modelos Biológicos , Neuroglía/metabolismo , Neuroglía/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Unión Proteica , Receptores de Transferrina/metabolismo , Andamios del Tejido , Transferrina/química , Transferrina/metabolismo
7.
Int J Nanomedicine ; 14: 6497-6517, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616141

RESUMEN

BACKGROUND: The potential of gene therapy for treatment of neurological disorders can be explored using designed lipid-based nanoparticles such as liposomes, which have demonstrated ability to deliver nucleic acid to brain cells. We synthesized liposomes conjugated to cell-penetrating peptides (CPPs) (vascular endothelial-cadherin-derived peptide [pVec], pentapeptide QLPVM and HIV-1 trans-activating protein [TAT]) and transferrin (Tf) ligand, and examined the influence of surface modifications on the liposome delivery capacity and transfection efficiency of encapsulated plasmid DNA. The design of liposomes was based on targeting molecular recognition of transferrin receptor overexpressed on the blood-brain barrier (BBB) with enhanced internalization ability of CPPs. METHODS: CPP-Tf-liposomes were characterized by particle size distribution, zeta potential, protection of encapsulated plasmid DNA, uptake mechanisms and transfection efficiencies. An in vitro triple co-culture BBB model selected the liposomal formulations that were able to cross the in vitro BBB and subsequently, transfect primary neuronal cells. The in vivo biodistribution and biocompatibility of selected formulations were also investigated in mice. RESULTS: Liposomal formulations were able to protect the encapsulated plasmid DNA against enzymatic degradation and presented low hemolytic potential and low cytotoxicity at 100 nM phospholipid concentration. Cellular internalization of nanoparticles occurred via multiple endocytosis pathways. CPP-Tf-conjugated liposomes mediated robust transfection of brain endothelial (bEnd.3), primary glial and primary neuronal cells. Liposomes modified with Tf and TAT demonstrated superior ability to cross the barrier layer and subsequently, transfect neuronal cells compared to other formulations. Quantification of fluorescently labeled liposomes and in vivo imaging demonstrated that this system could efficiently overcome the BBB and penetrate the brain of mice (7.7% penetration of injected dose). CONCLUSION: In vitro screening platforms are important tools to enhance the success of brain-targeted gene delivery systems. The potential of TAT-Tf-liposomes as efficient brain-targeted gene carriers in vitro and in vivo was suggested to be related to the presence of selected moieties on the nanoparticle surface.


Asunto(s)
Encéfalo/metabolismo , Péptidos de Penetración Celular/química , Técnicas de Transferencia de Gen , Lípidos/química , Nanopartículas/química , Animales , Barrera Hematoencefálica/metabolismo , Línea Celular , Supervivencia Celular , Endocitosis , Femenino , Terapia Genética , Proteínas Fluorescentes Verdes/metabolismo , Hemólisis , Humanos , Liposomas , Masculino , Ratones Endogámicos C57BL , Nanopartículas/ultraestructura , Neuronas/metabolismo , Plásmidos/metabolismo , Ratas , Distribución Tisular
8.
J Control Release ; 307: 247-260, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252036

RESUMEN

Glioblastoma is a hostile brain tumor associated with high infiltration leading to poor prognosis. Anti-cancer chemotherapeutic agents have limited access into the brain due to the presence of the blood brain barrier (BBB). In this study, we designed a dual functionalized liposomal delivery system, surface modified with transferrin (Tf) for receptor mediated transcytosis and a cell penetrating peptide-penetratin (Pen) for enhanced cell penetration. We loaded doxorubicin and erlotinib into liposomes to enhance their translocation across the BBB to glioblastoma tumor. In vitro cytotoxicity and hemocompatibility studies demonstrated excellent biocompatibility for in vivo administration. Co-delivery of doxorubicin and erlotinib loaded Tf-Pen liposomes revealed significantly (p < 0.05) higher translocation (~15%) across the co-culture endothelial barrier resulting in regression of tumor in the in vitro brain tumor model. The biodistribution of Tf-Pen liposomes demonstrated ~12 and 3.3 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively compared to free drugs. In addition, Tf-Pen liposomes showed excellent antitumor efficacy by regressing ~90% of tumor in mice brain with significant increase in the median survival time (36 days) along with no toxicity. Thus, we believe that this study would have high impact for treating patients with glioblastoma.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Péptidos de Penetración Celular/administración & dosificación , Doxorrubicina/administración & dosificación , Clorhidrato de Erlotinib/administración & dosificación , Glioblastoma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Transferrina/administración & dosificación , Animales , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacocinética , Doxorrubicina/farmacocinética , Clorhidrato de Erlotinib/farmacocinética , Femenino , Glioblastoma/metabolismo , Humanos , Liposomas , Masculino , Ratones Desnudos , Fosfatidiletanolaminas/administración & dosificación , Fosfatidiletanolaminas/farmacocinética , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Distribución Tisular , Transferrina/farmacocinética
9.
J Pharm Sci ; 107(11): 2902-2913, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30055226

RESUMEN

Drug delivery to the brain has been a major challenge due to the presence of the blood-brain barrier, which limits the uptake of most chemotherapeutics into brain. We developed a dual-functionalized liposomal delivery system, conjugating cell penetrating peptide penetratin to transferrin-liposomes (Tf-Pen-conjugated liposomes) to enhance the transport of an anticancer chemotherapeutic drug, 5-fluorouracil (5-FU), across the blood-brain barrier into the tumor cells. The in vitro cellular uptake study showed that the dual-functionalized liposomes are capable of higher cellular uptake in glioblastoma (U87) and brain endothelial (bEnd.3) cells monolayer. In addition, dual-functionalized liposomes demonstrated significantly higher apoptosis in U87 cells. The liposomal nanoparticles showed excellent blood compatibility and in vitro cell viability, as studied by hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. The 5-FU-loaded dual-functionalized liposomes demonstrated higher transport across the brain endothelial barrier and delivered 5-FU to tumor cells inside poly(lactic-co-glycolic acid)-chitosan scaffold (an in vitro brain tumor model), resulting in significant tumor regression.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Fluorouracilo/administración & dosificación , Glioblastoma/tratamiento farmacológico , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Liberación de Fármacos , Fluorouracilo/farmacocinética , Fluorouracilo/farmacología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Liposomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA