Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; : 101211, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39011766

RESUMEN

PURPOSE: An early genetic diagnosis can guide the time-sensitive treatment of individuals with genetic epilepsies. However, most genetic diagnoses occur long after disease onset. We aimed to identify early clinical features suggestive of genetic diagnoses in individuals with epilepsy through large-scale analysis of full-text electronic medical records (EMR). METHODS: We extracted 89 million time-stamped standardized clinical annotations using Natural Language Processing from 4,572,783 clinical notes from 32,112 individuals with childhood epilepsy, including 1,925 individuals with known or presumed genetic epilepsies. We applied these features to train random forest models to predict SCN1A-related disorders and any genetic diagnosis. RESULTS: We identified 47,774 age-dependent associations of clinical features with genetic etiologies a median of 3.6 years prior to molecular diagnosis. Across all 710 genetic etiologies identified in our cohort, neurodevelopmental differences between 6-9 months increased the likelihood of a later molecular diagnosis fivefold (P<0.0001, 95% CI=3.55-7.42). A later diagnosis of SCN1A-related disorders (AUC=0.91) or an overall positive genetic diagnosis (AUC=0.82) could be reliably predicted using random forest models. CONCLUSION: Clinical features predictive of genetic epilepsies precede molecular diagnoses by up to several years in conditions with known precision treatments. An earlier diagnosis facilitated by automated EMR analysis has the potential for earlier targeted therapeutic strategies in the genetic epilepsies.

2.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38410936

RESUMEN

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Convulsiones Febriles , Estado Epiléptico , Humanos , Estudios Retrospectivos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsias Mioclónicas/genética , Convulsiones Febriles/genética , Fenotipo , Estudios de Asociación Genética , Mutación/genética
3.
Epilepsy Behav ; 153: 109692, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394790

RESUMEN

OBJECTIVE: Demographic and disease factors are associated with cognitive deficits and postoperative cognitive declines in adults with pharmacoresistant temporal lobe epilepsy (TLE), but the role of genetic factors in cognition in TLE is not well understood. Polygenic scores (PGS) for neurological and neuropsychiatric disorders and IQ have been associated with cognition in patient and healthy populations. In this exploratory study, we examined the relationship between PGS for Alzheimer's disease (AD), depression, and IQ and cognitive outcomes in adults with TLE. METHODS: 202 adults with pharmacoresistant TLE had genotyping and completed neuropsychological evaluations as part of a presurgical work-up. A subset (n = 116) underwent temporal lobe resection and returned for postoperative cognitive testing. Logistic regression was used to determine if PGS for AD, depression, and IQ predicted baseline domain-specific cognitive function and cognitive phenotypes as well as postoperative language and memory decline. RESULTS: No significant findings survived correction for multiple comparisons. Prior to correction, higher PGS for AD and depression (i.e., increased genetic risk for the disorder), but lower PGS for IQ (i.e., decreased genetic likelihood of high IQ) appeared possibly associated with baseline cognitive impairment in TLE. In comparison, higher PGS for AD and IQ appeared as possible risk factors for cognitive decline following temporal lobectomy, while the possible relationship between PGS for depression and post-operative cognitive outcome was mixed. SIGNIFICANCE: We did not observe any relationships of large effect between PGS and cognitive function or postsurgical outcome; however, results highlight several promising trends in the data that warrant future investigation in larger samples better powered to detect small genetic effects.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia del Lóbulo Temporal , Adulto , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/cirugía , Cognición , Lóbulo Temporal/cirugía , Pruebas Neuropsicológicas , Lenguaje
5.
Brain Commun ; 6(2): fcae090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524155

RESUMEN

Understanding the clinical characteristics and medical treatment of individuals affected by genetic epilepsies is instrumental in guiding selection for genetic testing, defining the phenotype range of these rare disorders, optimizing patient care pathways and pinpointing unaddressed medical need by quantifying healthcare resource utilization. To date, a matched longitudinal cohort study encompassing the entire spectrum of clinical characteristics and medical treatment from childhood through adolescence has not been performed. We identified individuals with genetic and non-genetic epilepsies and onset at ages 0-5 years by linkage across the Cleveland Clinic Health System. We used natural language processing to extract medical terms and procedures from longitudinal electronic health records and tested for cross-sectional and temporal associations with genetic epilepsy. We implemented a two-stage design: in the discovery cohort, individuals were stratified as being 'likely genetic' or 'non-genetic' by a natural language processing algorithm, and controls did not receive genetic testing. The validation cohort consisted of cases with genetic epilepsy confirmed by manual chart review and an independent set of controls who received negative genetic testing. The discovery and validation cohorts consisted of 503 and 344 individuals with genetic epilepsy and matched controls, respectively. The median age at the first encounter was 0.1 years and 7.9 years at the last encounter, and the mean duration of follow-up was 8.2 years. We extracted 188,295 Unified Medical Language System annotations for statistical analysis across 9659 encounters. Individuals with genetic epilepsy received an earlier epilepsy diagnosis and had more frequent and complex encounters with the healthcare system. Notably, the highest enrichment of encounters compared with the non-genetic groups was found during the transition from paediatric to adult care. Our computational approach could validate established comorbidities of genetic epilepsies, such as behavioural abnormality and intellectual disability. We also revealed novel associations for genitourinary abnormalities (odds ratio 1.91, 95% confidence interval: 1.66-2.20, P = 6.16 × 10-19) linked to a spectrum of underrecognized epilepsy-associated genetic disorders. This case-control study leveraged real-world data to identify novel features associated with the likelihood of a genetic aetiology and quantified the healthcare utilization of genetic epilepsies compared with matched controls. Our results strongly recommend early genetic testing to stratify individuals into specialized care paths, thus improving the clinical management of people with genetic epilepsies.

6.
medRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766179

RESUMEN

Genetic variants in genes GRIN1 , GRIN2A , GRIN2B , and GRIN2D , which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and therapeutic applications. We assembled missense variants: 201 from patients, 631 from general population, and 159 characterized by electrophysiological readouts showing whether they can enhance or reduce the receptor function. This includes new functional data from 47 variants reported here, for the first time. We found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being key predictive features. Leveraging distances from ligands, we developed two independent machine learning-based predictors for NMDAR missense variants: a pathogenicity predictor which outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these, we reclassified variants of uncertain significance in the ClinVar database and refined a previous genome-informed epidemiological model to estimate the birth incidence of molecular mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an important feature in NMDARs that can enhance variant pathogenicity prediction and enable functional prediction. Further studies with larger numbers of phenotypically and functionally characterized variants will enhance the potential clinical utility of this method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA