Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710523

RESUMEN

Duchenne Muscular Dystrophy (DMD) is a progressive and fatal neuromuscular disease. Cycles of myofibre degeneration and regeneration are hallmarks of the disease where immune cells infiltrate to repair damaged skeletal muscle. Benfotiamine is a lipid soluble precursor to thiamine, shown clinically to reduce inflammation in diabetic related complications. We assessed whether benfotiamine administration could reduce inflammation related dystrophic pathology. Benfotiamine (10 mg/kg/day) was fed to male mdx mice (n = 7) for 15 weeks from 4 weeks of age. Treated mice had an increased growth weight (5-7 weeks) and myofibre size at treatment completion. Markers of dystrophic pathology (area of damaged necrotic tissue, central nuclei) were reduced in benfotiamine mdx quadriceps. Grip strength was increased and improved exercise capacity was found in mdx treated with benfotiamine for 12 weeks, before being placed into individual cages and allowed access to an exercise wheel for 3 weeks. Global gene expression profiling (RNAseq) in the gastrocnemius revealed benfotiamine regulated signalling pathways relevant to dystrophic pathology (Inflammatory Response, Myogenesis) and fibrotic gene markers (Col1a1, Col1a2, Col4a5, Col5a2, Col6a2, Col6a2, Col6a3, Lum) towards wildtype levels. In addition, we observed a reduction in gene expression of inflammatory gene markers in the quadriceps (Emr1, Cd163, Cd4, Cd8, Ifng). Overall, these data suggest that benfotiamine reduces dystrophic pathology by acting on inflammatory and fibrotic gene markers and signalling pathways. Given benfotiamine's excellent safety profile and current clinical use, it could be used in combination with glucocorticoids to treat DMD patients.

2.
Proc Natl Acad Sci U S A ; 120(19): e2211510120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126720

RESUMEN

Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.


Asunto(s)
Cartílago , Células Madre Pluripotentes Inducidas , Humanos , Cartílago/metabolismo , Condrocitos/metabolismo , Diferenciación Celular , Osteoblastos , Células Madre Pluripotentes Inducidas/metabolismo
3.
J Cell Mol Med ; 26(14): 4021-4031, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701367

RESUMEN

The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER-associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3-week-old male OI Col1a2 +/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2 +/p.G610C mouse bone structure, strength or composition, measured by micro-computed tomography, three point bending tests and Fourier-transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals.


Asunto(s)
Osteogénesis Imperfecta , Animales , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Mutación/genética , Osteogénesis , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Microtomografía por Rayos X
4.
Hum Mol Genet ; 29(3): 353-368, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696230

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disorder caused by mutations in the DMD gene that leads to the absence or severe reduction of dystrophin protein in muscle. The mdx mouse, also dystrophin deficient, is the model most widely used to study the pathology and test potential therapies, but the phenotype is milder than human DMD. This limits the magnitude and range of histological damage parameters and molecular changes that can be measured in pre-clinical drug testing. We used 3 weeks of voluntary wheel running to exacerbate the mdx phenotype. In mdx mice, voluntary exercise increased the amount of damaged necrotic tissue and macrophage infiltration. Global gene expression profiling revealed that exercise induced additional and larger gene expression changes in mdx mice and the pathways most impacted by exercise were all related to immune function or cell-extracellular matrix (ECM) interactions. When we compared the matrisome and inflammation genes that were dysregulated in mdx with those commonly differentially expressed in DMD, we found the exercised mdx molecular signature more closely resembled that of DMD. These gene expression changes in the exercised mdx model thus provide more scope to assess the effects of pre-clinical treatments. Our gene profiling comparisons also highlighted upregulation of ECM proteins involved in innate immunity pathways, proteases that can release them, downstream receptors and signaling molecules in exercised mdx and DMD, suggesting that the ECM could be a major source of pro-inflammatory molecules that trigger and maintain the immune response in dystrophic muscle.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Inmunidad/inmunología , Inflamación/patología , Actividad Motora , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Animales , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/metabolismo
5.
Connect Tissue Res ; 63(3): 210-227, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35225118

RESUMEN

Mutations in collagen genes cause a broad range of connective tissue pathologies. Structural mutations that impact procollagen assembly or triple helix formation and stability are a common and important mutation class. How misfolded procollagens engage with the cellular proteostasis machinery and whether they can elicit a cytotoxic unfolded protein response (UPR) is a topic of considerable research interest. Such interest is well justified since modulating the UPR could offer a new approach to treat collagenopathies for which there are no current disease mechanism-targeting therapies. This review scrutinizes the evidence underpinning the view that endoplasmic reticulum stress and chronic UPR activation contributes significantly to the pathophysiology of the collagenopathies. While there is strong evidence that the UPR contributes to the pathology for collagen X misfolding mutations, the evidence that misfolding mutations in other collagen types induce a canonical, cytotoxic UPR is incomplete. To gain a more comprehensive understanding about how the UPR amplifies to pathology, and thus what types of manipulations of the UPR might have therapeutic relevance, much more information is needed about how specific misfolding mutation types engage differentially with the UPR and downstream signaling responses. Most importantly, since the capacity of the proteostasis machinery to respond to collagen misfolding is likely to vary between cell types, reflecting their functional roles in collagen and extracellular matrix biosynthesis, detailed studies on the UPR should focus as much as possible on the actual target cells involved in the collagen pathologies.


Asunto(s)
Colágeno , Respuesta de Proteína Desplegada , Colágeno/genética , Estrés del Retículo Endoplásmico , Mutación , Patología Molecular
6.
Adv Exp Med Biol ; 1348: 311-323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807426

RESUMEN

Mutations in the genes encoding the major collagen VI isoform, COL6A1, COL6A2 and COL6A3, are responsible for the muscle disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. These disorders form a disease spectrum from mild to severe. Dominant and recessive mutations are found along the entire spectrum and the clinical phenotype is strongly influenced by the way mutations impede collagen VI protein assembly. Most mutations are in the triple helical domain, towards the N-terminus and they compromise microfibril assembly. Some mutations are found outside the helix in the C- and N-terminal globular domains, but because these regions are highly polymorphic it is difficult to discriminate mutations from rare benign changes without detailed structural and functional studies. Collagen VI deficiency leads to mitochondrial dysfunction, deficient autophagy and increased apoptosis. Therapies that target these consequences have been tested in mouse models and some have shown modest efficacy in small human trials. Antisense therapies for a common mutation that introduces a pseudoexon show promise in cell culture but haven't yet been tested in an animal model. Future therapeutic approaches await new research into how collagen VI deficiency signals downstream consequences.


Asunto(s)
Contractura , Enfermedades Musculares , Distrofias Musculares , Animales , Colágeno Tipo VI/genética , Ratones , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Mutación
7.
Molecules ; 26(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561994

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive fatal neuromuscular disorder with no cure. Therapies to restore dystrophin deficiency have been approved in some jurisdictions but long-term effectiveness is yet to be established. There is a need to develop alternative strategies to treat DMD. Resveratrol is a nutraceutical with anti-inflammatory properties. Previous studies have shown high doses (100-400 mg/kg bodyweight/day) benefit mdx mice. We treated 4-week-old mdx and wildtype mice with a lower dose of resveratrol (5 mg/kg bodyweight/day) for 15 weeks. Voluntary exercise was used to test if a lower dosage than previously tested could reduce exercise-induced damage where a greater inflammatory infiltrate is present. We found resveratrol promoted skeletal muscle hypertrophy in wildtype mice. In dystrophic muscle, resveratrol reduced exercise-induced muscle necrosis. Gene expression of immune cell markers, CD86 and CD163 were reduced; however, signalling targets associated with resveratrol's mechanism of action including Sirt1 and NF-κB were unchanged. In conclusion, a lower dose of resveratrol compared to the dosage used by other studies reduced necrosis and gene expression of inflammatory cell markers in dystrophic muscle suggesting it as a therapeutic candidate for treating DMD.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Resveratrol/farmacología , Animales , Biomarcadores/metabolismo , Hipertrofia/inducido químicamente , Hipertrofia/metabolismo , Hipertrofia/patología , Inflamación/metabolismo , Ratones , Necrosis/tratamiento farmacológico , Resveratrol/uso terapéutico
8.
J Cell Mol Med ; 23(3): 1735-1745, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30597759

RESUMEN

Osteogenesis imperfecta (OI) is commonly caused by heterozygous type I collagen structural mutations that disturb triple helix folding and integrity. This mutant-containing misfolded collagen accumulates in the endoplasmic reticulum (ER) and induces a form of ER stress associated with negative effects on osteoblast differentiation and maturation. Therapeutic induction of autophagy to degrade the mutant collagens could therefore be useful in ameliorating the ER stress and deleterious downstream consequences. To test this, we treated a mouse model of mild to moderate OI (α2(I) G610C) with dietary rapamycin from 3 to 8 weeks of age and effects on bone mass and mechanical properties were determined. OI bone mass and mechanics were, as previously reported, compromised compared to WT. While rapamycin treatment improved the trabecular parameters of WT and OI bones, the biomechanical deficits of OI bones were not rescued. Importantly, we show that rapamycin treatment suppressed the longitudinal and transverse growth of OI, but not WT, long bones. Our work demonstrates that dietary rapamycin offers no clinical benefit in this OI model and furthermore, the impact of rapamycin on OI bone growth could exacerbate the clinical consequences during periods of active bone growth in patients with OI caused by collagen misfolding mutations.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Colágeno Tipo I/fisiología , Modelos Animales de Enfermedad , Inmunosupresores/farmacología , Osteoblastos/efectos de los fármacos , Osteogénesis Imperfecta/tratamiento farmacológico , Sirolimus/farmacología , Animales , Apoptosis , Cadena alfa 1 del Colágeno Tipo I , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Osteoblastos/citología , Osteogénesis , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología
9.
J Biol Chem ; 291(7): 3197-208, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26668318

RESUMEN

The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼ 400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE(373) neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors.


Asunto(s)
Proteínas ADAM/metabolismo , Agrecanos/metabolismo , Artritis Experimental/enzimología , Articulación de la Rodilla/enzimología , Proteínas ADAM/química , Proteínas ADAM/genética , Proteínas ADAM/aislamiento & purificación , Proteína ADAMTS5 , Agrecanos/aislamiento & purificación , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Dominio Catalítico , Reactivos de Enlaces Cruzados/química , Cruzamientos Genéticos , Dimerización , Activación Enzimática , Eliminación de Gen , Células HEK293 , Humanos , Articulación de la Rodilla/inmunología , Articulación de la Rodilla/patología , Ratones Endogámicos C57BL , Ratones Mutantes , Peso Molecular , Proteínas Mutantes , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
10.
Ann Neurol ; 80(1): 101-11, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27159402

RESUMEN

OBJECTIVE: To evaluate the diagnostic outcomes in a large cohort of congenital muscular dystrophy (CMD) patients using traditional and next generation sequencing (NGS) technologies. METHODS: A total of 123 CMD patients were investigated using the traditional approaches of histology, immunohistochemical analysis of muscle biopsy, and candidate gene sequencing. Undiagnosed patients available for further testing were investigated using NGS. RESULTS: Muscle biopsy and immunohistochemical analysis found deficiencies of laminin α2, α-dystroglycan, or collagen VI in 50% of patients. Candidate gene sequencing and chromosomal microarray established a genetic diagnosis in 32% (39 of 123). Of 85 patients presenting in the past 20 years, 28 of 51 who lacked a confirmed genetic diagnosis (55%) consented to NGS studies, leading to confirmed diagnoses in a further 11 patients. Using the combination of approaches, a confirmed genetic diagnosis was achieved in 51% (43 of 85). The diagnoses within the cohort were heterogeneous. Forty-five of 59 probands with confirmed or probable diagnoses had variants in genes known to cause CMD (76%), and 11 of 59 (19%) had variants in genes associated with congenital myopathies, reflecting overlapping features of these conditions. One patient had a congenital myasthenic syndrome, and 2 had microdeletions. Within the cohort, 5 patients had variants in novel (PIGY and GMPPB) or recently published genes (GFPT1 and MICU1), and 7 had variants in TTN or RYR1, large genes that are technically difficult to Sanger sequence. INTERPRETATION: These data support NGS as a first-line tool for genetic evaluation of patients with a clinical phenotype suggestive of CMD, with muscle biopsy reserved as a second-tier investigation. Ann Neurol 2016;80:101-111.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Adolescente , Adulto , Niño , Preescolar , Colágeno Tipo VI/deficiencia , Distroglicanos/deficiencia , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Laminina/deficiencia , Músculo Esquelético/metabolismo , Adulto Joven
11.
J Biol Chem ; 290(7): 4272-81, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25533456

RESUMEN

Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD) sit at opposite ends of a clinical spectrum caused by mutations in the extracellular matrix protein collagen VI. Bethlem myopathy is relatively mild, and patients remain ambulant in adulthood while many UCMD patients lose ambulation by their teenage years and require respiratory interventions. Dominant and recessive mutations are found across the entire clinical spectrum; however, recessive Bethlem myopathy is rare, and our understanding of the molecular pathology is limited. We studied a patient with Bethlem myopathy. Electron microscopy of his muscle biopsy revealed abnormal mitochondria. We identified a homozygous COL6A2 p.D871N amino acid substitution in the C-terminal C2 A-domain. Mutant α2(VI) chains are unable to associate with α1(VI) and α3(VI) and are degraded by the proteasomal pathway. Some collagen VI is assembled, albeit more slowly than normal, and is secreted. These molecules contain the minor α2(VI) C2a splice form that has an alternative C terminus that does include the mutation. Collagen VI tetramers containing the α2(VI) C2a chain do not assemble efficiently into microfibrils and there is a severe collagen VI deficiency in the extracellular matrix. We expressed wild-type and mutant α2(VI) C2 domains in mammalian cells and showed that while wild-type C2 domains are efficiently secreted, the mutant p.D871N domain is retained in the cell. These studies shed new light on the protein domains important for intracellular and extracellular collagen VI assembly and emphasize the importance of molecular investigations for families with collagen VI disorders to ensure accurate diagnosis and genetic counseling.


Asunto(s)
Colágeno Tipo VI/química , Colágeno Tipo VI/genética , Contractura/genética , Contractura/patología , Homocigoto , Mitocondrias/patología , Distrofias Musculares/congénito , Mutación/genética , Sustitución de Aminoácidos , Western Blotting , Células Cultivadas , Colágeno Tipo VI/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
J Cell Sci ; 126(Pt 12): 2551-60, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23729740

RESUMEN

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mRNA surveillance system that degrades mRNA transcripts that harbour a premature translation-termination codon (PTC), thus reducing the synthesis of truncated proteins that would otherwise have deleterious effects. Although extensive research has identified a conserved repertoire of NMD factors, these studies have been performed with a restricted set of genes and gene constructs with relatively few exons. As a consequence, NMD mechanisms are poorly understood for genes with large 3' terminal exons, and the applicability of the current models to large multi-exon genes is not clear. In this Commentary, we present an overview of the current understanding of NMD and discuss how analysis of nonsense mutations in the collagen gene family has provided new mechanistic insights into this process. Although NMD of the collagen genes with numerous small exons is consistent with the widely accepted exon-junction complex (EJC)-dependent model, the degradation of Col10a1 transcripts with nonsense mutations cannot be explained by any of the current NMD models. Col10a1 NMD might represent a fail-safe mechanism for genes that have large 3' terminal exons. Defining the mechanistic complexity of NMD is important to allow us to understand the pathophysiology of the numerous genetic disorders caused by PTC mutations.


Asunto(s)
Codón sin Sentido , Colágeno/genética , Degradación de ARNm Mediada por Codón sin Sentido , Estabilidad del ARN/genética , ARN/genética , ARN/metabolismo , Animales , Colágeno/metabolismo , Exones , Humanos , Biosíntesis de Proteínas
13.
Nat Rev Genet ; 10(3): 173-83, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19204719

RESUMEN

Tissue-specific extracellular matrices (ECMs) are crucial for normal development and tissue function, and mutations in ECM genes result in a wide range of serious inherited connective tissue disorders. Mutations cause ECM dysfunction by combinations of two mechanisms. First, secretion of the mutated ECM components can be reduced by mutations affecting synthesis or by structural mutations causing cellular retention and/or degradation. Second, secretion of mutant protein can disturb crucial ECM interactions, structure and stability. Moreover, recent experiments suggest that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, contributes to the molecular pathology. Targeting ER stress might offer a new therapeutic strategy.


Asunto(s)
Enfermedades del Tejido Conjuntivo/genética , Mutación , Animales , Enfermedades del Tejido Conjuntivo/metabolismo , Retículo Endoplásmico/metabolismo , Matriz Extracelular/metabolismo , Humanos
14.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37905055

RESUMEN

Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.

15.
PLoS One ; 19(1): e0294847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271438

RESUMEN

BACKGROUND: ATL1102 is a 2'MOE gapmer antisense oligonucleotide to the CD49d alpha subunit of VLA-4, inhibiting expression of CD49d on lymphocytes, reducing survival, activation and migration to sites of inflammation. Children with DMD have dystrophin deficient muscles susceptible to contraction induced injury, which triggers the immune system, exacerbating muscle damage. CD49d is a biomarker of disease severity in DMD, with increased numbers of high CD49d expressing T cells correlating with more severe and progressive weakess, despite corticosteroid treatment. METHODS: This Phase 2 open label study assessed the safety, efficacy and pharmacokinetic profile of ATL1102 administered as 25 mg weekly by subcutaneous injection for 24 weeks in 9 non-ambulatory boys with DMD aged 10-18 years. The main objective was to assess safety and tolerability of ATL1102. Secondary objectives included the effect of ATL1102 on lymphocyte numbers in the blood, functional changes in upper limb function as assessed by Performance of Upper Limb test (PUL 2.0) and upper limb strength using MyoGrip and MyoPinch compared to baseline. RESULTS: Eight out of nine participants were on a stable dose of corticosteroids. ATL1102 was generally safe and well tolerated. No serious adverse events were reported. There were no participant withdrawals from the study. The most commonly reported adverse events were injection site erythema and skin discoloration. There was no statistically significant change in lymphocyte count from baseline to week 8, 12 or 24 of dosing however, the CD3+CD49d+ T lymphocytes were statistically significantly higher at week 28 compared to week 24, four weeks past the last dose (mean change 0.40x109/L 95%CI 0.05, 0.74; p = 0.030). Functional muscle strength, as measured by the PUL2.0, EK2 and Myoset grip and pinch measures, and MRI fat fraction of the forearm muscles were stable throughout the trial period. CONCLUSION: ATL1102, a novel antisense drug being developed for the treatment of inflammation that exacerbates muscle fibre damage in DMD, appears to be safe and well tolerated in non-ambulant boys with DMD. The apparent stabilisation observed on multiple muscle disease progression parameters assessed over the study duration support the continued development of ATL1102 for the treatment of DMD. TRIAL REGISTRATION: Clinical Trial Registration. Australian New Zealand Clinical Trials Registry Number: ACTRN12618000970246.


Asunto(s)
Distrofia Muscular de Duchenne , Masculino , Niño , Animales , Ratones , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Ratones Endogámicos mdx , Australia , Músculo Esquelético/metabolismo , Corticoesteroides/efectos adversos , Corticoesteroides/metabolismo , Inflamación/metabolismo
16.
Brain ; 135(Pt 6): 1714-23, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22628388

RESUMEN

Autosomal dominant congenital spinal muscular atrophy is characterized by predominantly lower limb weakness and wasting, and congenital or early-onset contractures of the hip, knee and ankle. Mutations in TRPV4, encoding a cation channel, have recently been identified in one large dominant congenital spinal muscular atrophy kindred, but the genetic basis of dominant congenital spinal muscular atrophy in many families remains unknown. It has been hypothesized that differences in the timing and site of anterior horn cell loss in the central nervous system account for the variations in clinical phenotype between different forms of spinal muscular atrophy, but there has been a lack of neuropathological data to support this concept in dominant congenital spinal muscular atrophy. We report clinical, electrophysiology, muscle magnetic resonance imaging and histopathology findings in a four generation family with typical dominant congenital spinal muscular atrophy features, without mutations in TRPV4, and in whom linkage to other known dominant neuropathy and spinal muscular atrophy genes has been excluded. The autopsy findings in the proband, who died at 14 months of age from an unrelated illness, provided a rare opportunity to study the neuropathological basis of dominant congenital spinal muscular atrophy. There was a reduction in anterior horn cell number in the lumbar and, to a lesser degree, the cervical spinal cord, and atrophy of the ventral nerve roots at these levels, in the absence of additional peripheral nerve pathology or abnormalities elsewhere along the neuraxis. Despite the young age of the child at the time of autopsy, there was no pathological evidence of ongoing loss or degeneration of anterior horn cells suggesting that anterior horn cell loss in dominant congenital spinal muscular atrophy occurs in early life, and is largely complete by the end of infancy. These findings confirm that dominant congenital spinal muscular atrophy is a true form of spinal muscular atrophy caused by a loss of anterior horn cells localized to lumbar and cervical regions early in development.


Asunto(s)
Células del Asta Anterior/patología , Salud de la Familia , Ligamiento Genético , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Canales Catiónicos TRPV/genética , Anciano , Autopsia , Niño , Preescolar , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/complicaciones , Miosinas/metabolismo , Fenotipo , Ultrasonografía Doppler
17.
Stem Cell Res ; 67: 103020, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682125

RESUMEN

The human iPSC line MCRIi019-A-6 was generated using CRISPR/Cas9-mediated gene editing to introduce a heterozygous COL2A1 exon 33 c.2155C>T (p.R719C) mutation into the control human iPSC line MCRIi019-A. Both the edited and parental lines display typical iPSC characteristics, including the expression of pluripotency markers, the ability to be differentiated into the three germ lines, and a normal karyotype. This cell line, along with the isogenic control line, can be used to study the molecular pathology of precocious osteoarthritis in a human model, more broadly understand type II collagenopathies, and explore novel therapeutic targets for this class of diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Osteoartritis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Heterocigoto , Mutación , Osteoartritis/metabolismo , Colágeno Tipo II/genética
18.
J Mech Behav Biomed Mater ; 142: 105868, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119723

RESUMEN

Exploring the structure-function relationships of cartilage on a microstructural level is crucial for tissue engineering approaches aiming to restore function. Therefore, a combination of mechanical testing with cell and tissue-level imaging would allow for longitudinal studying loading mechanisms, biological responses and mechanoadaptation of tissues at a microstructural level. This paper describes the design and validation of FELIX, a custom-built device for non-destructive image-guided micromechanical evaluation of biological tissues and tissue-engineered constructs. It combines multiphoton microscopy with non-destructive mechanical testing of native soft tissues. Ten silicone samples of the same size were mechanically tested with FELIX by different users to assess the repeatability and reproducibility. The results indicate that FELIX can successfully substitute mechanical testing protocols with a commercial device without compromising precision. Furthermore, FELIX demonstrated consistent results across repeated measurements, with very small deviations. Therefore, FELIX can be used to accurately measure biomechanical properties by different users for separate studies. Additionally, cell nuclei and collagen of porcine articular cartilage were successfully imaged under compression. Cell viability remained high in chondrocytes cultured in agarose over 21 days. Furthermore, there were no signs of contamination indicating a cell friendly, sterile environment for longitudinal studies. In conclusion, this work demonstrates that FELIX can consistently quantify mechanical measures without compromising precision. Furthermore, it is biocompatible allowing for longitudinal measurements.


Asunto(s)
Cartílago Articular , Condrocitos , Animales , Porcinos , Reproducibilidad de los Resultados , Cartílago Articular/fisiología , Ingeniería de Tejidos/métodos , Relación Estructura-Actividad
19.
J Appl Physiol (1985) ; 134(5): 1278-1286, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995911

RESUMEN

Both aging and physical activity can influence the amount of intramuscular connective tissue in skeletal muscle, but the impact of these upon specific extracellular matrix (ECM) proteins in skeletal muscle is unknown. We investigated the proteome profile of intramuscular connective tissue by label-free proteomic analysis of cellular protein-depleted extracts from lateral gastrocnemius muscle of old (22-23 mo old) and middle-aged (11 mo old) male mice subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We hypothesized that aging is correlated with an increased amount of connective tissue proteins in skeletal muscle and that regular physical activity can counteract these age-related changes. We found that dominating cellular proteins were diminished in the urea/thiourea extract, which was therefore used for proteomics. Proteomic analysis identified 482 proteins and showed enrichment for ECM proteins. Statistical analysis revealed that the abundances of 86 proteins changed with age. Twenty-three of these differentially abundant proteins were identified as structural ECM proteins (e.g., collagens and laminins) and all of these were significantly more abundant with aging. No significant effect of training or interaction between training and advance in age was found for any proteins. Finally, we found a lower protein concentration in the urea/thiourea extracts from the old mice compared with the middle-aged mice. Our findings indicate that the intramuscular ECM solubility is affected by increased age but is not altered by physical training.NEW & NOTEWORTHY We investigated the impact of aging and exercise on extracellular matrix components of intramuscular connective tissue using proteomics. Middle-aged and old mice were subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We prepared extracts of extracellular matrix proteins depleted of cellular proteins. Our findings indicate that intramuscular connective tissue alters its soluble protein content with age but is unaffected by training.


Asunto(s)
Condicionamiento Físico Animal , Proteoma , Masculino , Ratones , Animales , Proteoma/metabolismo , Proteómica , Actividad Motora , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Tejido Conectivo , Proteínas de la Matriz Extracelular/metabolismo
20.
Front Cell Dev Biol ; 10: 795522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186920

RESUMEN

The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte's microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA