Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
JMIR Res Protoc ; 13: e54593, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470476

RESUMEN

BACKGROUND: Computer-assisted clinical coding (CAC) tools are designed to help clinical coders assign standardized codes, such as the ICD-10 (International Statistical Classification of Diseases, Tenth Revision), to clinical texts, such as discharge summaries. Maintaining the integrity of these standardized codes is important both for the functioning of health systems and for ensuring data used for secondary purposes are of high quality. Clinical coding is an error-prone cumbersome task, and the complexity of modern classification systems such as the ICD-11 (International Classification of Diseases, Eleventh Revision) presents significant barriers to implementation. To date, there have only been a few user studies; therefore, our understanding is still limited regarding the role CAC systems can play in reducing the burden of coding and improving the overall quality of coding. OBJECTIVE: The objective of the user study is to generate both qualitative and quantitative data for measuring the usefulness of a CAC system, Easy-ICD, that was developed for recommending ICD-10 codes. Specifically, our goal is to assess whether our tool can reduce the burden on clinical coders and also improve coding quality. METHODS: The user study is based on a crossover randomized controlled trial study design, where we measure the performance of clinical coders when they use our CAC tool versus when they do not. Performance is measured by the time it takes them to assign codes to both simple and complex clinical texts as well as the coding quality, that is, the accuracy of code assignment. RESULTS: We expect the study to provide us with a measurement of the effectiveness of the CAC system compared to manual coding processes, both in terms of time use and coding quality. Positive outcomes from this study will imply that CAC tools hold the potential to reduce the burden on health care staff and will have major implications for the adoption of artificial intelligence-based CAC innovations to improve coding practice. Expected results to be published summer 2024. CONCLUSIONS: The planned user study promises a greater understanding of the impact CAC systems might have on clinical coding in real-life settings, especially with regard to coding time and quality. Further, the study may add new insights on how to meaningfully exploit current clinical text mining capabilities, with a view to reducing the burden on clinical coders, thus lowering the barriers and paving a more sustainable path to the adoption of modern coding systems, such as the new ICD-11. TRIAL REGISTRATION: clinicaltrials.gov NCT06286865; https://clinicaltrials.gov/study/NCT06286865. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/54593.

2.
AMIA Annu Symp Proc ; 2023: 456-464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222432

RESUMEN

The lack of relevant annotated datasets represents one key limitation in the application of Natural Language Processing techniques in a broad number of tasks, among them Protected Health Information (PHI) identification in Norwegian clinical text. In this work, the possibility of exploiting resources from Swedish, a very closely related language, to Norwegian is explored. The Swedish dataset is annotated with PHI information. Different processing and text augmentation techniques are evaluated, along with their impact in the final performance of the model. The augmentation techniques, such as injection and generation of both Norwegian and Scandinavian Named Entities into the Swedish training corpus, showed to increase the performance in the de-identification task for both Danish and Norwegian text. This trend was also confirmed by the evaluation of model performance on a sample Norwegian gastro surgical clinical text.


Asunto(s)
Registros Electrónicos de Salud , Lenguaje , Humanos , Suecia , Procesamiento de Lenguaje Natural , Dinamarca
3.
AMIA Annu Symp Proc ; 2023: 465-473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222373

RESUMEN

With the recent advances in natural language processing and deep learning, the development of tools that can assist medical coders in ICD-10 diagnosis coding and increase their efficiency in coding discharge summaries is significantly more viable than before. To that end, one important component in the development of these models is the datasets used to train them. In this study, such datasets are presented, and it is shown that one of them can be used to develop a BERT-based language model that can consistently perform well in assigning ICD-10 codes to discharge summaries written in Swedish. Most importantly, it can be used in a coding support setup where a tool can recommend potential codes to the coders. This reduces the range of potential codes to consider and, in turn, reduces the workload of the coder. Moreover, the de-identified and pseudonymised dataset is open to use for academic users.


Asunto(s)
Clasificación Internacional de Enfermedades , Alta del Paciente , Humanos , Procesamiento de Lenguaje Natural , Codificación Clínica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA