Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Kidney Dis ; 82(1): 105-112, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36940740

RESUMEN

Fructose has recently been proposed to stimulate vasopressin secretion in humans. Fructose-induced vasopressin secretion is not only postulated to result from ingestion of fructose-containing drinks but may also occur from endogenous fructose production via activation of the polyol pathway. This raises the question of whether fructose might be involved in some cases of vasopressin-induced hyponatremia, especially in situations where the cause is not fully known such as in the syndrome of inappropriate secretion of diuretic hormone (SIADH) and exercise-associated hyponatremia, which has been observed in marathon runners. Here we discuss the new science of fructose and vasopressin, and how it may play a role in some of these conditions, as well as in the complications associated with rapid treatment (such as the osmotic demyelination syndrome). Studies to test the role of fructose could provide new pathophysiologic insights as well as novel potential treatment strategies for these common conditions.


Asunto(s)
Hiponatremia , Síndrome de Secreción Inadecuada de ADH , Carrera , Humanos , Hiponatremia/terapia , Hiponatremia/complicaciones , Diuréticos , Síndrome de Secreción Inadecuada de ADH/complicaciones , Vasopresinas
2.
Nephrol Dial Transplant ; 38(1): 41-48, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-34473287

RESUMEN

Climate change should be of special concern for the nephrologist, as the kidney has a critical role in protecting the host from dehydration, but it is also a favorite target of heat stress and dehydration. Here we discuss how rising temperatures and extreme heat events may affect the kidney. The most severe presentation of heat stress is heat stroke, which can result in severe electrolyte disturbance and both acute and chronic kidney disease (CKD). However, lesser levels of heat stress also have multiple effects, including exacerbating kidney disease and precipitating cardiovascular events in subjects with established kidney disease. Heat stress can also increase the risk for kidney stones, cause multiple electrolyte abnormalities and induce both acute and chronic kidney disease. Recently there have been multiple epidemics of CKD of uncertain etiology in various regions of the world, including Mesoamerica, Sri Lanka, India and Thailand. There is increasing evidence that climate change and heat stress may play a contributory role in these conditions, although other causes, including toxins, could also be involved. As climate change worsens, the nephrologist should prepare for an increase in diseases associated with heat stress and dehydration.


Asunto(s)
Trastornos de Estrés por Calor , Nefrología , Insuficiencia Renal Crónica , Humanos , Cambio Climático , Deshidratación/complicaciones , Insuficiencia Renal Crónica/complicaciones , Riñón , Trastornos de Estrés por Calor/complicaciones
3.
Am J Physiol Regul Integr Comp Physiol ; 322(5): R347-R359, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35271385

RESUMEN

Fructose metabolism and hyperuricemia have been shown to drive insulin resistance, metabolic syndrome, hepatic steatosis, hypertension, inflammation, and innate immune reactivity in experimental studies. We suggest that these adverse effects are at least in part the result of suppressed activity of sirtuins, particularly Sirtuin1. Deficiency of sirtuin deacetylations is a consequence of reduced bioavailability of its cofactor nicotinamide adenine dinucleotide (NAD+). Uric acid-induced inflammation and oxidative stress consume NAD+ and activation of the polyol pathway of fructose and uric acid synthesis also reduces the NAD+-to-NADH ratio. Variability in the compensatory regeneration of NAD+ could result in variable recovery of sirtuin activity that may explain the inconsistent benefits of treatments directed to reduce uric acid in clinical trials. Here, we review the pathogenesis of the metabolic dysregulation driven by hyperuricemia and their potential relationship with sirtuin deficiency. In addition, we discuss therapeutic options directed to increase NAD+ and sirtuins activity that may improve the adverse effects resulting from fructose and uric acid synthesis.


Asunto(s)
Resistencia a la Insulina , Sirtuinas , Fructosa/efectos adversos , Fructosa/metabolismo , Humanos , NAD/metabolismo , Sirtuinas/metabolismo , Ácido Úrico
4.
Mol Biol Rep ; 49(7): 5939-5952, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35368226

RESUMEN

BACKGROUND: Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS: Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1ß secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1ß. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1ß, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1ß and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS: Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.


Asunto(s)
Remodelación Atrial , Gota , Canal de Potasio Kv1.5/metabolismo , Animales , Caspasa 1/metabolismo , Gota/tratamiento farmacológico , Gota/metabolismo , Gota/patología , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacología
5.
Clin Infect Dis ; 73(11): e3939-e3948, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33534888

RESUMEN

BACKGROUND: Differential etiologies of pediatric acute febrile respiratory illness pose challenges for all populations globally, but especially in malaria-endemic settings because the pathogens responsible overlap in clinical presentation and frequently occur together. Rapid identification of bacterial pneumonia with high-quality diagnostic tools would enable appropriate, point-of-care antibiotic treatment. Current diagnostics are insufficient, and the discovery and development of new tools is needed. We report a unique biomarker signature identified in blood samples to accomplish this. METHODS: Blood samples from 195 pediatric Mozambican patients with clinical pneumonia were analyzed with an aptamer-based, high-dynamic-range, quantitative assay (~1200 proteins). We identified new biomarkers using a training set of samples from patients with established bacterial, viral, or malarial pneumonia. Proteins with significantly variable abundance across etiologies (false discovery rate <0.01) formed the basis for predictive diagnostic models derived from machine learning techniques (Random Forest, Elastic Net). Validation on a dedicated test set of samples was performed. RESULTS: Significantly different abundances between bacterial and viral infections (219 proteins) and bacterial infections and mixed (viral and malaria) infections (151 proteins) were found. Predictive models achieved >90% sensitivity and >80% specificity, regardless of number of pathogen classes. Bacterial pneumonia was strongly associated with neutrophil markers-in particular, degranulation including HP, LCN2, LTF, MPO, MMP8, PGLYRP1, RETN, SERPINA1, S100A9, and SLPI. CONCLUSIONS: Blood protein signatures highly associated with neutrophil biology reliably differentiated bacterial pneumonia from other causes. With appropriate technology, these markers could provide the basis for a rapid diagnostic for field-based triage for antibiotic treatment of pediatric pneumonia.


Asunto(s)
Malaria , Neumonía Bacteriana , Neumonía Viral , Virosis , Biomarcadores , Niño , Humanos , Malaria/diagnóstico , Neumonía Bacteriana/diagnóstico , Virosis/diagnóstico
6.
Clin Infect Dis ; 72(9): e397-e401, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32710613

RESUMEN

Some clusters of children with a multisystem inflammatory syndrome (MIS-C) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported. We describe the epidemiological and clinical features of children with MIS-C in Spain. MIS-C is a potentially severe condition that presents in children with recent SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Humanos , España/epidemiología , Síndrome , Síndrome de Respuesta Inflamatoria Sistémica
7.
Hum Mol Genet ; 28(24): 4132-4147, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646342

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, characterized by cyst formation and growth. Hyperproliferation is a major contributor to cyst growth. At the nexus of regulating proliferation, is 4E-BP1. We demonstrate that ADPKD mouse and rat models, ADPKD patient renal biopsies and PKD1-/- cells exhibited hyperphosphorylated 4E-BP1, a biomarker of increased translation and proliferation. We hypothesized that expression of constitutively active 4E-BP1 constructs (4E-BP1F113A and 4E-BP1R13AF113A) would decrease proliferation and reduce cyst expansion. Utilizing the Pkd1RC/RC mouse, we determined the effect of 4E-BP1F113A on PKD. Unexpectedly, 4E-BP1F113A resulted in increased cyst burden and suppressed apoptosis markers, increased anti-apoptotic Bcl-2 protein and increased mitochondrial proteins. Exogenous 4E-BP1 enhanced proliferation, decreased apoptosis, increased anti-apoptotic Bcl-2 protein, impaired NADPH oxidoreductase activity, increased mitochondrial proteins and increased superoxide production in PKD patient-derived renal epithelial cells. Reduced 4E-BP1 expression suppressed proliferation, restored apoptosis and improved cellular metabolism. These findings provide insight into how cyst-lining cells respond to 4E-BP1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , NADH NADPH Oxidorreductasas/metabolismo , Fosforilación , Enfermedades Renales Poliquísticas/patología , Riñón Poliquístico Autosómico Dominante/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ratas , Canales Catiónicos TRPP/metabolismo
8.
Rev Endocr Metab Disord ; 22(2): 351-366, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33389543

RESUMEN

Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity. The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic interventions.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Índice de Masa Corporal , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Obesidad/epidemiología , Prevalencia , Factores de Riesgo
9.
Am J Nephrol ; 52(10-11): 837-844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34673651

RESUMEN

Hyperuricemia predicts the development of chronic kidney disease (CKD) and metabolic complications, but whether it has a causal role has been controversial. This is especially true given the 2 recently conducted randomized controlled trials that failed to show a benefit of lowering uric acid in type 1 diabetes-associated CKD and subjects with stage 3-4 CKD. While these studies suggest that use of urate-lowering drugs in unselected patients is unlikely to slow the progression of CKD, there are subsets of subjects with CKD where reducing uric acid synthesis may be beneficial. This may be the case in patients with gout, hyperuricemia (especially associated with increased production), and urate crystalluria. Here, we discuss the evidence and propose that future clinical trials targeting these specific subgroups should be performed.


Asunto(s)
Hiperuricemia/complicaciones , Insuficiencia Renal Crónica/etiología , Humanos , Hiperuricemia/tratamiento farmacológico , Insuficiencia Renal Crónica/prevención & control
10.
Evol Hum Behav ; 42(3): 194-203, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33994772

RESUMEN

Several behavioral disorders, including attention deficit hyperactivity disorder (ADHD), bipolar disorder, and aggressive behaviors are linked with sugar intake and obesity. The reason(s) for this association has been unclear. Here we present a hypothesis supporting a role for fructose, a component of sugar and high fructose corn syrup (HFCS), and uric acid (a fructose metabolite), in increasing the risk for these behavioral disorders. Recent studies have shown that the reason fructose intake is strongly associated with development of metabolic syndrome is that fructose intake activates an evolutionary-based survival pathway that stimulates foraging behavior and the storage of energy as fat. While modest intake may aid animals that would like to store fat as a protective response from food shortage or starvation, we propose that high intake of sugar and HFCS causes a hyperactive foraging response that stimulates craving, impulsivity, risk taking and aggression that increases the risk for ADHD, bipolar disease and aggressive behavior. High glycemic carbohydrates and salty foods may also contribute as they can be converted to fructose in the body. Some studies suggest uric acid produced during fructose metabolism may mediate some of these effects. Chronic stimulation of the pathway could lead to desensitization of hedonic responses and induce depression. In conclusion, a hyperactive foraging response driven by high glycemic carbohydrates and sugars may contribute to affective disorders.

11.
Alcohol Clin Exp Res ; 45(8): 1519-1526, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34120350

RESUMEN

In this narrative review, we present the hypothesis that key mutations in two genes, occurring 15 and 10 million years ago (MYA), were individually and then collectively adaptive for ancestral humans during periods of starvation, but are maladaptive in modern civilization (i.e., "thrifty genes"), with the consequence that these genes not only increase our risk today for obesity, but also for alcoholism. Both mutations occurred when ancestral apes were experiencing loss of fruit availability during periods of profound climate change or environmental upheaval. The silencing of uricase (urate oxidase) activity 15 MYA enhanced survival by increasing the ability for fructose present in dwindling fruit to be stored as fat, a consequence of enhanced uric acid production during fructose metabolism that stimulated lipogenesis and blocked fatty acid oxidation. Likewise, a mutation in class IV alcohol dehydrogenase ~10 MYA resulted in a remarkable 40-fold increase in the capacity to oxidize ethanol (EtOH), which allowed our ancestors to ingest fallen, fermenting fruit. In turn, the EtOH ingested could activate aldose reductase that stimulates the conversion of glucose to fructose, while uric acid produced during EtOH metabolism could further enhance fructose production and metabolism. By aiding survival, these mutations would have allowed our ancestors to generate more fat, primarily from fructose, to survive changing habitats due to the Middle Miocene disruption and also during the late-Miocene aridification of East Africa. Unfortunately, the enhanced ability to metabolize and utilize EtOH may now be acting to increase our risk for alcoholism, which may be yet another consequence of once-adaptive thrifty genes.


Asunto(s)
Adaptación Biológica/genética , Alcohol Deshidrogenasa/genética , Alcoholismo/genética , Hominidae/genética , Urato Oxidasa/genética , Animales , Evolución Biológica , Cambio Climático , Etanol/metabolismo , Fructosa/metabolismo , Hominidae/metabolismo , Humanos , Mutación , Selección Genética
12.
Pediatr Diabetes ; 22(7): 1031-1039, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34435718

RESUMEN

OBJECTIVE: Glomerular injury is a recognized complication of diabetic ketoacidosis (DKA), yet the tubular lesions are poorly understood. The aim of this prospective study was to evaluate the presence and reversibility of tubular injury during DKA in children with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Blood and urine samples were collected from 40 children with DKA (52% boys, mean age 11 ± 4 years, venous pH 7.2 ± 0.1, glucose 451 ± 163 mg/dL) at three timepoints: 0-8 and 12-24 h after starting insulin, and 3 months after discharge. Mixed-effects models evaluated the changes in tubular injury markers over time (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1 [KIM-1], and interleukin 18 [IL-18]). We also evaluated the relationships among the tubular injury biomarkers, copeptin, a vasopressin surrogate, and serum uric acid (SUA). RESULTS: Serum NGAL, KIM-1, and IL-18 were highest at 0-8 h (306.5 ± 45.9 ng/mL, 128.9 ± 10.1 pg/mL, and 564.3 ± 39.2 pg/mL, respectively) and significantly decreased over 3 months (p = 0.03, p = 0.01, and p < 0.001, respectively). There were strong relationships among increases in copeptin and SUA and rises in tubular injury biomarkers. At 0-8 h, participants with acute kidney injury (AKI) [17%] showed significantly higher concentrations of tubular injury markers, copeptin, and SUA. CONCLUSIONS: DKA was characterized by tubular injury, and the degree of injury associated with elevated copeptin and SUA. Tubular injury biomarkers, copeptin and SUA may be able to predict AKI in DKA.


Asunto(s)
Lesión Renal Aguda/etiología , Diabetes Mellitus Tipo 1/complicaciones , Cetoacidosis Diabética/complicaciones , Nefropatías Diabéticas/complicaciones , Túbulos Renales/fisiopatología , Lesión Renal Aguda/fisiopatología , Adolescente , Biomarcadores/sangre , Niño , Cetoacidosis Diabética/fisiopatología , Nefropatías Diabéticas/fisiopatología , Femenino , Tasa de Filtración Glomerular , Glicopéptidos/sangre , Humanos , Masculino , Índice de Severidad de la Enfermedad , Ácido Úrico/sangre
13.
Proc Natl Acad Sci U S A ; 115(12): 3138-3143, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507217

RESUMEN

Dietary guidelines for obesity typically focus on three food groups (carbohydrates, fat, and protein) and caloric restriction. Intake of noncaloric nutrients, such as salt, are rarely discussed. However, recently high salt intake has been reported to predict the development of obesity and insulin resistance. The mechanism for this effect is unknown. Here we show that high intake of salt activates the aldose reductase-fructokinase pathway in the liver and hypothalamus, leading to endogenous fructose production with the development of leptin resistance and hyperphagia that cause obesity, insulin resistance, and fatty liver. A high-salt diet was also found to predict the development of diabetes and nonalcoholic fatty liver disease in a healthy population. These studies provide insights into the pathogenesis of obesity and diabetes and raise the potential for reduction in salt intake as an additional interventional approach for reducing the risk for developing obesity and metabolic syndrome.


Asunto(s)
Fructosa/metabolismo , Leptina/sangre , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Obesidad/inducido químicamente , Cloruro de Sodio Dietético/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Diabetes Mellitus/inducido químicamente , Fructoquinasas/genética , Humanos , Leptina/genética , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/metabolismo , Sacarosa/efectos adversos , Sacarosa/análogos & derivados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Am Soc Nephrol ; 31(5): 898-906, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253274

RESUMEN

Understanding fructose metabolism might provide insights to renal pathophysiology. To support systemic glucose concentration, the proximal tubular cells reabsorb fructose as a substrate for gluconeogenesis. However, in instances when fructose intake is excessive, fructose metabolism is costly, resulting in energy depletion, uric acid generation, inflammation, and fibrosis in the kidney. A recent scientific advance is the discovery that fructose can be endogenously produced from glucose under pathologic conditions, not only in kidney diseases, but also in diabetes, in cardiac hypertrophy, and with dehydration. Why humans have such a deleterious mechanism to produce fructose is unknown, but it may relate to an evolutionary benefit in the past. In this article, we aim to illuminate the roles of fructose as it relates to gluconeogenesis and fructoneogenesis in the kidney.


Asunto(s)
Fructosa/metabolismo , Riñón/metabolismo , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Nefropatías Diabéticas/metabolismo , Azúcares de la Dieta/efectos adversos , Azúcares de la Dieta/farmacocinética , Metabolismo Energético , Ácidos Grasos/biosíntesis , Fructosa/efectos adversos , Gluconeogénesis/fisiología , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/metabolismo , Sorbitol/metabolismo , Ácido Úrico/metabolismo , Vertebrados/metabolismo
15.
Euro Surveill ; 26(4)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33509338

RESUMEN

IntroductionPERTINENT is a pilot active surveillance system of infants hospitalised with pertussis in six European Union/European Economic Area countries (37 hospitals, seven sites).AimThis observational study aimed to estimate annual pertussis incidence per site from 2016 to 2018 and respective trends between 2017 and 2018. Pertussis cases were described, including their severity.MethodsWe developed a generic protocol and laboratory guidelines to harmonise practices across sites. Cases were hospitalised infants testing positive for Bordetella pertussis by PCR or culture. Sites collected demographic, clinical, laboratory data, vaccination status, and risk/protective factors. We estimated sites' annual incidences by dividing case numbers by the catchment populations.ResultsFrom December 2015 to December 2018, we identified 469 cases (247 males; 53%). The median age, birthweight and gestational age were 2.5 months (range: 0-11.6; interquartile range (IQR): 2.5), 3,280 g (range: 700-4,925; IQR: 720) and 39 weeks (range: 25-42; IQR: 2), respectively. Thirty cases (6%) had atypical presentation either with cough or cyanosis only or with absence of pertussis-like symptoms. Of 330 cases with information, 83 (25%) were admitted to intensive care units including five deceased infants too young to be vaccinated. Incidence rate ratios between 2018 and 2017 were 1.43 in Czech Republic (p = 0.468), 0.25 in Catalonia (p = 0.002), 0.71 in France (p = 0.034), 0.14 in Ireland (p = 0.002), 0.63 in Italy (p = 0.053), 0.21 in Navarra (p = 0.148) and zero in Norway.ConclusionsIncidence appeared to decrease between 2017 and 2018 in all but one site. Enhanced surveillance of hospitalised pertussis in Europe is essential to monitor pertussis epidemiology and disease burden.


Asunto(s)
Tos Ferina , Anciano , Bordetella pertussis , República Checa , Europa (Continente) , Unión Europea , Francia , Hospitalización , Hospitales , Humanos , Incidencia , Lactante , Recién Nacido , Irlanda , Italia , Masculino , Noruega , Vacuna contra la Tos Ferina , Vacunación , Tos Ferina/diagnóstico , Tos Ferina/epidemiología , Tos Ferina/prevención & control
16.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670975

RESUMEN

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Asunto(s)
Cumarinas/farmacología , Dieta Occidental/efectos adversos , Fructoquinasas/antagonistas & inhibidores , Enfermedades Renales/prevención & control , Síndrome Metabólico/prevención & control , Animales , Cumarinas/uso terapéutico , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Fructoquinasas/metabolismo , Fructosa/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar
17.
J Biol Chem ; 294(11): 4272-4281, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30651350

RESUMEN

Dietary, fructose-containing sugars have been strongly associated with the development of nonalcoholic fatty liver disease (NAFLD). Recent studies suggest that fructose also can be produced via the polyol pathway in the liver, where it may induce hepatic fat accumulation. Moreover, fructose metabolism yields uric acid, which is highly associated with NAFLD. Here, using biochemical assays, reporter gene expression, and confocal fluorescence microscopy, we investigated whether uric acid regulates aldose reductase, a key enzyme in the polyol pathway. We evaluated whether soluble uric acid regulates aldose reductase expression both in cultured hepatocytes (HepG2 cells) and in the liver of hyperuricemic rats and whether this stimulation is associated with endogenous fructose production and fat accumulation. Uric acid dose-dependently stimulated aldose reductase expression in the HepG2 cells, and this stimulation was associated with endogenous fructose production and triglyceride accumulation. This stimulatory mechanism was mediated by uric acid-induced oxidative stress and stimulation of the transcription factor nuclear factor of activated T cells 5 (NFAT5). Uric acid also amplified the effects of elevated glucose levels to stimulate hepatocyte triglyceride accumulation. Hyperuricemic rats exhibited elevated hepatic aldose reductase expression, endogenous fructose accumulation, and fat buildup that was significantly reduced by co-administration of the xanthine oxidase inhibitor allopurinol. These results suggest that uric acid generated during fructose metabolism may act as a positive feedback mechanism that stimulates endogenous fructose production by stimulating aldose reductase in the polyol pathway. Our findings suggest an amplifying mechanism whereby soft drinks rich in glucose and fructose can induce NAFLD.


Asunto(s)
Tejido Adiposo/metabolismo , Aldehído Reductasa/metabolismo , Fructosa/biosíntesis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polímeros/metabolismo , Ácido Úrico/farmacología , Animales , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Fructosa/metabolismo , Células Hep G2 , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Polímeros/análisis , Ratas , Ratas Wistar , Células Tumorales Cultivadas , Ácido Úrico/metabolismo
18.
Crit Rev Clin Lab Sci ; 57(5): 308-322, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31935149

RESUMEN

Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.


Asunto(s)
Fructosa/efectos adversos , Fructosa/metabolismo , Resistencia a la Insulina/fisiología , Animales , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Lipogénesis , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/epidemiología , Obesidad/etiología , Obesidad/metabolismo
19.
Am J Physiol Endocrinol Metab ; 319(2): E276-E290, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32574112

RESUMEN

Intake of sugars, especially the fructose component, is strongly associated with the development of obesity and metabolic syndrome, but the relative role of taste versus metabolism in driving preference, intake, and metabolic outcome is not fully understood. We aimed to evaluate the preference for sweet substances and the tendency to develop metabolic syndrome in response to these sugars in mice lacking functional taste signaling [P2X2 (P2X purinoreceptor 2)/P2X3 (P2X purinoreceptor 3) double knockout mice (DKO)] and mice unable to metabolize fructose (fructokinase knockout mice). Of interest, our data indicate that despite their inability to taste sweetness, P2X2/3 DKO mice still prefer caloric sugars (including fructose and glucose) to water in long-term testing, although with diminished preference compared with control mice. Despite reduced intake of caloric sugars by P2X2/3 DKO animals, the DKO mice still show increased levels of the sugar-dependent hormone FGF21 (fibroblast growth factor 21) in plasma and liver. Despite lower sugar intake, taste-blind mice develop severe features of metabolic syndrome due to reduced sensitivity to leptin, reduced ability to mobilize and oxidize fats, and increased hepatic de novo lipogenesis. In contrast to P2X2/3 DKO and wild-type mice, fructokinase knockout mice, which cannot metabolize fructose and are protected against fructose-induced metabolic syndrome, demonstrate reduced preference and intake for all fructose-containing sugars tested but not for glucose or artificial sweeteners. Based on these observations, we conclude that sugar can induce metabolic syndrome in mice independently of its sweet properties. Furthermore, our data demonstrate that the metabolism of fructose is necessary for sugar to drive intake and preference in mice.


Asunto(s)
Sacarosa en la Dieta/efectos adversos , Síndrome Metabólico/etiología , Obesidad/etiología , Gusto/fisiología , Animales , Sacarosa en la Dieta/administración & dosificación , Preferencias Alimentarias/fisiología , Fructosa/administración & dosificación , Fructosa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2X2/deficiencia , Receptores Purinérgicos P2X2/fisiología , Receptores Purinérgicos P2X3/deficiencia , Receptores Purinérgicos P2X3/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA