Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Intern Med ; 292(1): 68-80, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253286

RESUMEN

Lung cancer causes more deaths than breast, cervical, and colorectal cancer combined. Nevertheless, population-based lung cancer screening is still not considered standard practice in most countries worldwide. Early lung cancer detection leads to better survival outcomes: patients diagnosed with stage 1A lung cancer have a >75% 5-year survival rate, compared to <5% at stage 4. Low-dose computed tomography (LDCT) thorax imaging for the secondary prevention of lung cancer has been studied at length, and has been shown to significantly reduce lung cancer mortality in high-risk populations. The US National Lung Screening Trial reported a 20% overall reduction in lung cancer mortality when comparing LDCT to chest X-ray, and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) trial more recently reported a 24% reduction when comparing LDCT to no screening. Hence, the focus has now shifted to implementation research. Consequently, the 4-IN-THE-LUNG-RUN consortium based in five European countries, has set up a large-scale multicenter implementation trial. Successful implementation of and accessibility to LDCT lung cancer screening are dependent on many factors, not limited to population selection, recruitment strategy, computed tomography screening frequency, lung-nodule management, participant compliance, and cost effectiveness. This review provides an overview of current evidence for LDCT lung cancer screening, and draws attention to major factors that need to be addressed to successfully implement standardized, effective, and accessible screening throughout Europe. Evidence shows that through the appropriate use of risk-prediction models and a more personalized approach to screening, efficacy could be improved. Furthermore, extending the screening interval for low-risk individuals to reduce costs and associated harms is a possibility, and through the use of volumetric-based measurement and follow-up, false positive results can be greatly reduced. Finally, smoking cessation programs could be a valuable addition to screening programs and artificial intelligence could offer a solution to the added workload pressures radiologists are facing.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Inteligencia Artificial , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tamizaje Masivo/métodos , Estudios Multicéntricos como Asunto , Tomografía Computarizada por Rayos X/métodos
2.
Am J Physiol Renal Physiol ; 320(5): F947-F962, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719571

RESUMEN

Renal endothelial cells (ECs) play crucial roles in vasorelaxation, ultrafiltration, and selective transport of electrolytes and water, but also in leakage of the glomerular filtration barrier and inflammatory processes like complement activation and leukocyte recruitment. In addition, they are target cells for both cellular and antibody-mediated rejection in the transplanted kidney. To study the molecular and cellular processes underlying EC behavior in renal disease, well-characterized primary renal ECs are indispensible. In this report, we describe a straightforward procedure to isolate ECs from the perfusion fluid of human donor kidneys by a combination of negative selection of monocytes/macrophages, positive selection by CD31 Dynabeads, and propagation in endothelium-specific culture medium. Thus, we isolated and propagated renal ECs from 102 donor kidneys, representative of all blood groups and major human leukocyte antigen (HLA) class I and II antigens. The obtained ECs were positive for CD31 and von Willebrand factor, expressed other endothelial markers such as CD34, VEGF receptor-2, TIE2, and plasmalemmal vesicle associated protein-1 to a variable extent, and were negative for the monocyte marker CD14 and lymphatic endothelial marker podoplanin. HLA class II was either constitutively expressed or could be induced by interferon-γ. Furthermore, as a proof of principle, we showed the diagnostic value of this renal endothelial biobank in renal endothelium-specific cross-matching tests for HLA antibodies.NEW & NOTEWORTHY We describe a new and widely accessible approach to obtain human primary renal endothelial cells in a standardized fashion, by isolating from the perfusate of machine-perfused donor kidneys. Characterization of the cells showed a mixed population originating from different compartments of the kidney. As a proof of principle, we demonstrated a possible diagnostic application in an endothelium-specific cross-match. Next to transplantation, we foresee further applications in the field renal endothelial research.


Asunto(s)
Separación Celular/métodos , Células Endoteliales/fisiología , Riñón/irrigación sanguínea , Riñón/citología , Técnicas de Cultivo de Órganos/métodos , Células Cultivadas , Antígenos de Histocompatibilidad Clase I , Humanos , Donantes de Tejidos
3.
J Thorac Oncol ; 19(1): 36-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487906

RESUMEN

Low-dose computed tomography (LDCT) screening for lung cancer substantially reduces mortality from lung cancer, as revealed in randomized controlled trials and meta-analyses. This review is based on the ninth CT screening symposium of the International Association for the Study of Lung Cancer, which focuses on the major themes pertinent to the successful global implementation of LDCT screening and develops a strategy to further the implementation of lung cancer screening globally. These recommendations provide a 5-year roadmap to advance the implementation of LDCT screening globally, including the following: (1) establish universal screening program quality indicators; (2) establish evidence-based criteria to identify individuals who have never smoked but are at high-risk of developing lung cancer; (3) develop recommendations for incidentally detected lung nodule tracking and management protocols to complement programmatic lung cancer screening; (4) Integrate artificial intelligence and biomarkers to increase the prediction of malignancy in suspicious CT screen-detected lesions; and (5) standardize high-quality performance artificial intelligence protocols that lead to substantial reductions in costs, resource utilization and radiologist reporting time; (6) personalize CT screening intervals on the basis of an individual's lung cancer risk; (7) develop evidence to support clinical management and cost-effectiveness of other identified abnormalities on a lung cancer screening CT; (8) develop publicly accessible, easy-to-use geospatial tools to plan and monitor equitable access to screening services; and (9) establish a global shared education resource for lung cancer screening CT to ensure high-quality reading and reporting.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Inteligencia Artificial , Tomografía Computarizada por Rayos X/métodos , Pulmón/patología , Tamizaje Masivo
4.
Lung Cancer ; 165: 133-140, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35123156

RESUMEN

OBJECTIVE: To evaluate performance of AI as a standalone reader in ultra-low-dose CT lung cancer baseline screening, and compare it to that of experienced radiologists. METHODS: 283 participants who underwent a baseline ultra-LDCT scan in Moscow Lung Cancer Screening, between February 2017-2018, and had at least one solid lung nodule, were included. Volumetric nodule measurements were performed by five experienced blinded radiologists, and independently assessed using an AI lung cancer screening prototype (AVIEW LCS, v1.0.34, Coreline Soft, Co. ltd, Seoul, Korea) to automatically detect, measure, and classify solid nodules. Discrepancies were stratified into two groups: positive-misclassification (PM); nodule classified by the reader as a NELSON-plus /EUPS-indeterminate/positive nodule, which at the reference consensus read was < 100 mm3, and negative-misclassification (NM); nodule classified as a NELSON-plus /EUPS-negative nodule, which at consensus read was ≥ 100 mm3. RESULTS: 1149 nodules with a solid-component were detected, of which 878 were classified as solid nodules. For the largest solid nodule per participant (n = 283); 61 [21.6 %; 53 PM, 8 NM] discrepancies were reported for AI as a standalone reader, compared to 43 [15.1 %; 22 PM, 21 NM], 36 [12.7 %; 25 PM, 11 NM], 29 [10.2 %; 25 PM, 4 NM], 28 [9.9 %; 6 PM, 22 NM], and 50 [17.7 %; 15 PM, 35 NM] discrepancies for readers 1, 2, 3, 4, and 5 respectively. CONCLUSION: Our results suggest that through the use of AI as an impartial reader in baseline lung cancer screening, negative-misclassification results could exceed that of four out of five experienced radiologists, and radiologists' workload could be drastically diminished by up to 86.7%.

5.
Sci Rep ; 11(1): 9139, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911102

RESUMEN

We investigated whether presence and characteristics of lung nodules in the general population using low-dose computed tomography (LDCT) varied by season. Imaging in Lifelines (ImaLife) study participants who underwent chest LDCT-scanning between October 2018 and October 2019 were included in this sub-study. Hay fever season (summer) was defined as 1st April to 30th September and Influenza season (winter) as 1st October to 31st March. All lung nodules with volume of ≥ 30 mm3 (approximately 3 mm in diameter) were registered. In total, 2496 lung nodules were found in 1312 (38%) of the 3456 included participants (nodules per participant ranging from 1 to 21, median 1). In summer, 711 (54%) participants had 1 or more lung nodule(s) compared to 601 (46%) participants in winter (p = 0.002). Of the spherical, perifissural and left-upper-lobe nodules, relatively more were detected in winter, whereas of the polygonal-, irregular-shaped and centrally-calcified nodules, relatively more were detected in summer. Various seasonal diseases with inflammation as underlying pathophysiology may influence presence and characteristics of lung nodules. Further investigation into underlying pathophysiology using short-term LDCT follow-up could help optimize the management strategy for CT-detected lung nodules in clinical practice.


Asunto(s)
Neoplasias Pulmonares/diagnóstico , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Detección Precoz del Cáncer , Femenino , Humanos , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Prevalencia , Dosis de Radiación , Análisis de Regresión , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA