Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L29-L38, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991487

RESUMEN

Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 ß, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1ß, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-ß (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Interleucina-6/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Inflamación/etiología , Factor de Necrosis Tumoral alfa/metabolismo , Lesión Pulmonar Aguda/metabolismo , Hemoglobinas/metabolismo , Síndrome de Dificultad Respiratoria/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Blood Cells Mol Dis ; 98: 102699, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36027791

RESUMEN

Elevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe3+, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time. These CAgg were intensely autofluorescent, altered intracellular structures (such as mitochondria), formed in multiple cell types and with different media composition, and formed regardless of the presence or absence of cells. An in-depth chemical analysis of these CAgg revealed that they contain inorganic components and are not pure hemoglobin. To oxidize freshly isolated hemoglobin without addition of an oxidizing agent, we developed a novel method to convert ferrous CFH to ferric CFH using ultraviolet light without the need for additional redox agents. Unlike commercial ferric hemoglobin, treatment of cells with the fresh ferric hemoglobin did not lead to CAgg formation. These studies suggest that commercially sourced CFH may contain stabilizers and additives which contribute to CAgg formation.


Asunto(s)
Células Endoteliales , Rayos Ultravioleta , Humanos , Células Endoteliales/metabolismo , Hemoglobinas/metabolismo , Oxidación-Reducción , Hierro/metabolismo
3.
Am J Physiol Renal Physiol ; 317(4): F922-F929, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364379

RESUMEN

Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.


Asunto(s)
Lesión Renal Aguda/patología , Hemoglobinas/toxicidad , Sepsis/patología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Citocinas/metabolismo , Femenino , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Lipocalina 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/complicaciones , Análisis de Supervivencia
4.
Proc Natl Acad Sci U S A ; 111(40): 14518-23, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246565

RESUMEN

MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.


Asunto(s)
Colesterol/metabolismo , Homeostasis , MicroARNs/genética , Transcriptoma/genética , Animales , Línea Celular Tumoral , Células Cultivadas , HDL-Colesterol/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Ratones Noqueados , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
PLoS One ; 19(9): e0308648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39312544

RESUMEN

BACKGROUND: The alveolar epithelium is protected by a heparan sulfate-rich, glycosaminoglycan layer called the epithelial glycocalyx. It is cleaved in patients with acute respiratory distress syndrome (ARDS) and in murine models of influenza A (IAV) infection, shedding fragments into the airspace from the cell surface. Glycocalyx shedding results in increased permeability of the alveolar-capillary barrier, amplifying acute lung injury. The mechanisms underlying alveolar epithelial glycocalyx shedding in IAV infection are unknown. We hypothesized that induction of host sheddases such as matrix metalloproteinases (MMPs) during IAV infection results in glycocalyx shedding and increased lung injury. MATERIALS AND METHODS: We measured glycocalyx shedding and lung injury during IAV infection with and without treatment with the pan-MMP inhibitor Ilomastat (ILO) and in an MMP-7 knock out (MMP-7KO) mouse. C57BL/6 or MMP-7KO male and female mice were given IAV A/PR/8/34 (H1N1) at 30,000 PFU/mouse or PBS intratracheally. For some experiments, C56BL/6 mice were infected in the presence of ILO (100mg/kg) or vehicle given daily by IP injection. Bronchoalveolar lavage (BAL) and lung tissue were collected on day 1, 3, and 7 for analysis of glycocalyx shedding (BAL Syndecan-1) and lung injury (histology, BAL protein, BAL cytokines, BAL immune cell infiltrates, BAL RAGE). Expression and localization of the sheddase MMP-7 and its inhibitor TIMP-1 was examined by RNAScope. For in vitro experiments, MLE-12 mouse lung epithelial cells were cultured and treated with active or heat-inactivated heparinase (2.5 U/mL) prior to infection with IAV (MOI 1) and viral load and MMP-7 and TIMP-1 expression analyzed. RESULTS: IAV infection caused shedding of the epithelial glycocalyx into the BAL. Inhibition of MMPs with ILO reduced glycocalyx shedding by 36% (p = 0.0051) and reduced lung epithelial injury by 40% (p = 0.0404). ILO also reduced viral load by 68% (p = 0.027), despite having no significant effect on lung cytokine production. Both MMP-7 and its inhibitor TIMP-1 were upregulated in IAV infected mice: MMP-7 colocalized with IAV, while TIMP-1 was limited to cells adjacent to infection. However, MMP-7KO mice had similar glycocalyx shedding, epithelial injury, and viral load compared to WT littermates, suggesting redundancy in MMP sheddase function in the lung. In vitro, heparinase treatment before infection led to a 52% increase in viral load (p = 0.0038) without altering MMP-7 or TIMP-1 protein levels. CONCLUSIONS: Glycocalyx shedding and MMPs play key roles in IAV-induced epithelial injury, with significant impact on IAV viral load. Further studies are needed to understand which specific MMPs regulate lung epithelial glycocalyx shedding.


Asunto(s)
Glicocálix , Metaloproteinasa 7 de la Matriz , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae , Animales , Glicocálix/metabolismo , Ratones , Femenino , Masculino , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones Noqueados , Alveolos Pulmonares/virología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Ácidos Hidroxámicos/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Indoles
6.
Sci Adv ; 9(13): eade7647, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000867

RESUMEN

Improved approaches to expanding the pool of donor lungs suitable for transplantation are critically needed for the growing population with end-stage lung disease. Cross-circulation (XC) of whole blood between swine and explanted human lungs has previously been reported to enable the extracorporeal recovery of donor lungs that declined for transplantation due to acute, reversible injuries. However, immunologic interactions of this xenogeneic platform have not been characterized, thus limiting potential translational applications. Using flow cytometry and immunohistochemistry, we demonstrate that porcine immune cell and immunoglobulin infiltration occurs in this xenogeneic XC system, in the context of calcineurin-based immunosuppression and complement depletion. Despite this, xenogeneic XC supported the viability, tissue integrity, and physiologic improvement of human donor lungs over 24 hours of xeno-support. These findings provide targets for future immunomodulatory strategies to minimize immunologic interactions on this organ support biotechnology.


Asunto(s)
Trasplante de Pulmón , Pulmón , Humanos , Porcinos , Animales , Terapia de Inmunosupresión
7.
Physiol Rep ; 8(21): e14589, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33128438

RESUMEN

Cell-free hemoglobin (CFH) is associated with severe lung injury in human patients and is sufficient to induce airspace inflammation and alveolar-capillary barrier dysfunction in an experimental model of acute lung injury. The mechanisms through which this occurs are unknown. One key pathway which regulates inflammation during acute lung injury is the NLRP3 inflammasome. Because CFH can act as a damage-associated molecular pattern, we hypothesized that CFH may activate the NLRP3 inflammasome during acute lung injury. Primary mouse alveolar macrophages and cultured murine macrophages exposed to CFH (0-1 mg/ml) for 24 hr demonstrated robust upregulation of the NLRP3 inflammasome components NLRP3, caspase-1, and caspase-11. Maximal induction of the NLRP3 inflammasome by CFH required TLR4. Compared to wild-type controls, mice lacking NLRP3 developed less airspace inflammation (2.7 × 105  cells/ml in bronchoalveolar lavage fluid versus. 1.1 × 105 /ml, p = .006) after exposure to intratracheal CFH. Together, these data demonstrate that CFH can stimulate the NLRP3 inflammasome in macrophages and that this pathway may be important in the pathogenesis of CFH-induced acute lung injury.


Asunto(s)
Sistema Libre de Células/metabolismo , Hemoglobinas/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Animales , Femenino , Hemoglobinas/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
8.
PLoS One ; 15(2): e0228727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32012200

RESUMEN

Increased endothelial permeability is central to the pathogenesis of sepsis and leads to organ dysfunction and death but the endogenous mechanisms that drive increased endothelial permeability are not completely understood. We previously reported that cell-free hemoglobin (CFH), elevated in 80% of patients with sepsis, increases lung microvascular permeability in an ex vivo human lung model and cultured endothelial cells. In this study, we augmented a murine model of polymicrobial sepsis with elevated circulating CFH to test the hypothesis that CFH increases microvascular endothelial permeability by inducing endothelial apoptosis. Mice were treated with an intraperitoneal injection of cecal slurry with or without a single intravenous injection of CFH. Severity of illness, mortality, systemic and lung inflammation, endothelial injury and dysfunction and lung apoptosis were measured at selected time points. We found that CFH added to CS increased sepsis mortality, plasma inflammatory cytokines as well as lung apoptosis, edema and inflammation without affecting large vessel reactivity or vascular injury marker concentrations. These results suggest that CFH is an endogenous mediator of increased endothelial permeability and apoptosis in sepsis and may be a promising therapeutic target.


Asunto(s)
Apoptosis , Permeabilidad Capilar , Hemoglobinas/metabolismo , Pulmón/irrigación sanguínea , Pulmón/patología , Sepsis/metabolismo , Sepsis/patología , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Sepsis/microbiología
9.
JCI Insight ; 4(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573976

RESUMEN

Acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness and commonly occurs in sepsis. Although numerous clinical and environmental risk factors exist, not all patients with risk factors develop ARDS, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels predict worse outcomes. Excess CFH is rapidly scavenged by haptoglobin (Hp). A common HP genetic variant, HP2, is unique to humans and is common in many populations worldwide. HP2 haptoglobin has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared with the alternative HP1. We hypothesized that HP2 increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared with wild-type mice. We then tested the clinical relevance of our findings in 496 septic critically ill adults, finding that HP2 increased ARDS susceptibility after controlling for clinical risk factors and plasma CFH. These observations identify HP2 as a potentially novel genetic ARDS risk factor during sepsis and may have important implications in the study and treatment of ARDS.


Asunto(s)
Haptoglobinas/genética , Síndrome de Dificultad Respiratoria/genética , Sepsis/complicaciones , Adulto , Animales , Apoptosis , Permeabilidad Capilar , Predisposición Genética a la Enfermedad , Humanos , Pulmón/irrigación sanguínea , Pulmón/patología , Ratones , Ratones Transgénicos , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Análisis de Supervivencia
10.
JCI Insight ; 3(2)2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29367464

RESUMEN

Primary graft dysfunction (PGD) is acute lung injury within 72 hours of lung transplantation. We hypothesized that cell-free hemoglobin (CFH) contributes to PGD by increasing lung microvascular permeability and tested this in patients, ex vivo human lungs, and cultured human lung microvascular endothelial cells. In a nested case control study of 40 patients with severe PGD at 72 hours and 80 matched controls without PGD, elevated preoperative CFH was independently associated with increased PGD risk (odds ratio [OR] 2.75, 95%CI, 1.23-6.16, P = 0.014). The effect of CFH on PGD was magnified by reperfusion fraction of inspired oxygen (FiO2) ≥ 0.40 (OR 3.41, P = 0.031). Isolated perfused human lungs exposed to intravascular CFH (100 mg/dl) developed increased vascular permeability as measured by lung weight (CFH 14.4% vs. control 0.65%, P = 0.047) and extravasation of Evans blue-labeled albumin dye (EBD) into the airspace (P = 0.027). CFH (1 mg/dl) also increased paracellular permeability of human pulmonary microvascular endothelial cell monolayers (hPMVECs). Hyperoxia (FiO2 = 0.95) increased human lung and hPMVEC permeability compared with normoxia (FiO2 = 0.21). Treatment with acetaminophen (15 µg/ml), a specific hemoprotein reductant, prevented CFH-dependent permeability in human lungs (P = 0.046) and hPMVECs (P = 0.037). In summary, CFH may mediate PGD through oxidative effects on microvascular permeability, which are augmented by hyperoxia and abrogated by acetaminophen.


Asunto(s)
Hemoglobinas/inmunología , Hiperoxia/inmunología , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/inmunología , Acetaminofén/farmacología , Aloinjertos/irrigación sanguínea , Aloinjertos/inmunología , Aloinjertos/patología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/inmunología , Estudios de Casos y Controles , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Hemoglobinas/antagonistas & inhibidores , Humanos , Hiperoxia/sangre , Hiperoxia/patología , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/inmunología , Pulmón/patología , Masculino , Microvasos/citología , Microvasos/metabolismo , Persona de Mediana Edad , Estrés Oxidativo/inmunología , Disfunción Primaria del Injerto/sangre , Disfunción Primaria del Injerto/patología
11.
J Vis Exp ; (117)2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27929461

RESUMEN

The diversity of small non-coding RNAs (sRNA) is rapidly expanding and their roles in biological processes, including gene regulation, are emerging. Most interestingly, sRNAs are also found outside of cells and are stably present in all biological fluids. As such, extracellular sRNAs represent a novel class of disease biomarkers and are likely involved in cell signaling and intercellular communication networks. To assess their potential as biomarkers, sRNAs can be quantified in plasma, urine, and other fluids. Nevertheless, to fully understand the impact of extracellular sRNAs as endocrine signals, it is important to determine which carriers are transporting and protecting them in biological fluids (e.g., plasma), which cells and tissues contribute to extracellular sRNA pools, and cells and tissues capable of accepting and utilizing extracellular sRNA. To accomplish these goals, it is critical to isolate highly pure populations of extracellular carriers for sRNA profiling and quantification. We have previously demonstrated that lipoproteins, particularly high-density lipoproteins (HDL), transport functional microRNAs (miRNA) between cells and HDL-miRNAs are significantly altered in disease. Here, we detail a new protocol that utilizes tandem HDL isolation with density-gradient ultracentrifugation (DGUC) and fast-protein-liquid chromatography (FPLC) to obtain highly pure HDL for downstream profiling and quantification of all sRNAs, including miRNAs, using both high-throughput sequencing and real-time PCR approaches. This protocol will be a valuable resource for the investigation of sRNAs on HDL.


Asunto(s)
Lipoproteínas HDL , ARN Pequeño no Traducido , Regulación de la Expresión Génica de las Plantas , Humanos , Lipoproteínas HDL/aislamiento & purificación , MicroARNs
12.
Diabetes ; 63(9): 3141-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24722248

RESUMEN

MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes.


Asunto(s)
Resistencia a la Insulina/genética , MicroARNs/fisiología , Animales , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Femenino , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/fisiología , Humanos , Ratones , Modelos Animales , Pioglitazona , Ratas , Ratas Zucker , Tiazolidinedionas/uso terapéutico , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA