Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 14: 1100816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875075

RESUMEN

Background: Autism Spectrum Disorders (ASD) are defined as a group of pervasive neurodevelopmental disorders, and the heterogeneity in the symptomology and etiology of ASD has long been recognized. Altered immune function and gut microbiota have been found in ASD populations. Immune dysfunction has been hypothesized to involve in the pathophysiology of a subtype of ASD. Methods: A cohort of 105 ASD children were recruited and grouped based on IFN-γ levels derived from ex vivo stimulated γδT cells. Fecal samples were collected and analyzed with a metagenomic approach. Comparison of autistic symptoms and gut microbiota composition was made between subgroups. Enriched KEGG orthologues markers and pathogen-host interactions based on metagenome were also analyzed to reveal the differences in functional features. Results: The autistic behavioral symptoms were more severe for children in the IFN-γ-high group, especially in the body and object use, social and self-help, and expressive language performance domains. LEfSe analysis of gut microbiota revealed an overrepresentation of Selenomonadales, Negatiyicutes, Veillonellaceae and Verrucomicrobiaceae and underrepresentation of Bacteroides xylanisolvens and Bifidobacterium longum in children with higher IFN-γ level. Decreased metabolism function of carbohydrate, amino acid and lipid in gut microbiota were found in the IFN-γ-high group. Additional functional profiles analyses revealed significant differences in the abundances of genes encoding carbohydrate-active enzymes between the two groups. And enriched phenotypes related to infection and gastroenteritis and underrepresentation of one gut-brain module associated with histamine degradation were also found in the IFN-γ-High group. Results of multivariate analyses revealed relatively good separation between the two groups. Conclusions: Levels of IFN-γ derived from γδT cell could serve as one of the potential candidate biomarkers to subtype ASD individuals to reduce the heterogeneity associated with ASD and produce subgroups which are more likely to share a more similar phenotype and etiology. A better understanding of the associations among immune function, gut microbiota composition and metabolism abnormalities in ASD would facilitate the development of individualized biomedical treatment for this complex neurodevelopmental disorder.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Humanos , Síntomas Conductuales , Aminoácidos
2.
Front Cell Infect Microbiol ; 12: 886196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800387

RESUMEN

Autism is a kind of biologically based neurodevelopmental condition, and the coexistence of atopic dermatitis (AD) is not uncommon. Given that the gut microbiota plays an important role in the development of both diseases, we aimed to explore the differences of gut microbiota and their correlations with urinary organic acids between autistic children with and without AD. We enrolled 61 autistic children including 36 with AD and 25 without AD. The gut microbiota was sequenced by metagenomic shotgun sequencing, and the diversity, compositions, and functional pathways were analyzed further. Urinary organic acids were assayed by gas chromatography-mass spectrometry, and univariate/multivariate analyses were applied. Spearman correlation analysis was conducted to explore their relationships. In our study, AD individuals had more prominent gastrointestinal disorders. The alpha diversity of the gut microbiota was lower in the AD group. LEfSe analysis showed a higher abundance of Anaerostipes caccae, Eubacterium hallii, and Bifidobacterium bifidum in AD individuals, with Akkermansia muciniphila, Roseburia intestinalis, Haemophilus parainfluenzae, and Rothia mucilaginosa in controls. Meanwhile, functional profiles showed that the pathway of lipid metabolism had a higher proportion in the AD group, and the pathway of xenobiotics biodegradation was abundant in controls. Among urinary organic acids, adipic acid, 3-hydroxyglutaric acid, tartaric acid, homovanillic acid, 2-hydroxyphenylacetic acid, aconitic acid, and 2-hydroxyhippuric acid were richer in the AD group. However, only adipic acid remained significant in the multivariate analysis (OR = 1.513, 95% CI [1.042, 2.198], P = 0.030). In the correlation analysis, Roseburia intestinalis had a negative correlation with aconitic acid (r = -0.14, P = 0.02), and the latter was positively correlated with adipic acid (r = 0.41, P = 0.006). Besides, the pathway of xenobiotics biodegradation seems to inversely correlate with adipic acid (r = -0.42, P = 0.18). The gut microbiota plays an important role in the development of AD in autistic children, and more well-designed studies are warranted to explore the underlying mechanism.


Asunto(s)
Trastorno Autístico , Dermatitis Atópica , Microbioma Gastrointestinal , Ácido Aconítico/análisis , Adipatos/análisis , Niño , Clostridiales , Dermatitis Atópica/complicaciones , Dermatitis Atópica/microbiología , Heces/microbiología , Humanos
3.
Math Biosci Eng ; 17(1): 202-215, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31731347

RESUMEN

Copy number variations (CNVs) play an important role in many types of cancer. With the rapid development of next generation sequencing (NGS) techniques, many methods for detecting CNVs of a single sample have emerged: (i) require genome-wide data of both case and control samples, (ii) depend on sequencing depth and GC content correction algorithm, (iii) rely on statistical models built on CNV positive and negative sample datasets. These make them costly in the data analysis and ineffective in the targeted sequencing data. In this study, we developed a novel alignment-free method called DL-CNV to call CNV from the target sequencing data of a single sample. Specifically, we collected two sets of samples. The first set consists of 1301 samples, in which 272 have CNVs in ERBB2 and the second set is composed of 1148 samples with 63 samples containing CNVs in MET. Finally, we found that a testing AUC of 0.9454 for ERBB2 and 0.9220 for MET. Furthermore, we hope to make the CNV detection could be more accurate with clinical "gold standard" (e.g. FISH) information and provide a new research direction, which can be used as the supplement to the existing NGS methods.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Variaciones en el Número de Copia de ADN , Aprendizaje Profundo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Pulmonares/genética , Algoritmos , Área Bajo la Curva , Bases de Datos Factuales , Exones , Reacciones Falso Positivas , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas c-met/genética , Curva ROC , Receptor ErbB-2/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
Sci Rep ; 6: 23068, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26979567

RESUMEN

Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation.


Asunto(s)
Genómica/métodos , Metabolómica/métodos , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Simbiosis , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico/genética , Fructosa/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Genoma Bacteriano/genética , Glucosa/metabolismo , Manitol/metabolismo , Nucleótidos/metabolismo , Filogenia , Rhodobacteraceae/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos , Sorbitol/metabolismo , Sorbosa/metabolismo
5.
Huan Jing Ke Xue ; 36(8): 2727-34, 2015 Aug.
Artículo en Zh | MEDLINE | ID: mdl-26591997

RESUMEN

During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere.


Asunto(s)
Microbiología del Aire , Contaminantes Atmosféricos/análisis , Bacterias/clasificación , Atmósfera , Bacterias/aislamiento & purificación , Beijing , Tamaño de la Partícula , Material Particulado/análisis , ARN Ribosómico 16S/genética , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA