Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Cancer ; 130(10): 1593-1598, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615107

RESUMEN

Here, we report on the process of a highly impactful and successful creative, collaborative, and multi-partner public engagement project, Radiation Reveal. It brought together ten young adults aged 17-25-year-olds with experience of radiotherapy with researchers at Cancer Research UK RadNet City of London across three 2-hour online workshops. Our aims were to 1) initiate discussions between young adults and radiation researchers, and 2) identify what people wish they had known about radiotherapy before or during treatment. These aims were surpassed; other benefits included peer support, participants' continued involvement in subsequent engagement projects, lasting friendships, creation of support groups for others, and creation and national dissemination of top ten tips for medical professionals and social media resources. A key learning was that this project required a dedicated and (com)passionate person with connections to national cancer charities. When designing the project, constant feedback is also needed from charities and young adults with and without radiotherapy experience. Finally, visually capturing discussions and keeping the door open beyond workshops further enhanced impact. Here, we hope to inform and inspire people to help project the patient voice in all we do.


Asunto(s)
Neoplasias , Humanos , Adulto Joven , Adulto , Adolescente , Femenino , Masculino , Neoplasias/radioterapia , Investigación Biomédica
2.
Artículo en Inglés | MEDLINE | ID: mdl-38797497

RESUMEN

PURPOSE: Despite a rise in clinical use of radiopharmaceutical therapies, the biological effects of radionuclides and their relationship with absorbed radiation dose are poorly understood. Here, we set out to define this relationship for Auger electron emitters [99mTc]TcO4- and [123I]I- and ß--particle emitter [188Re]ReO4-. Studies were carried out using genetically modified cells that permitted direct radionuclide comparisons. METHODS AND MATERIALS: Triple-negative MDA-MB-231 breast cancer cells expressing the human sodium iodide symporter (hNIS) and green fluorescent protein (GFP; MDA-MB-231.hNIS-GFP) were used. In vitro radiotoxicity of [99mTc]TcO4-, [123I]I-, and [188Re]ReO4- was determined using clonogenic assays. Radionuclide uptake, efflux, and subcellular location were used to calculate nuclear absorbed doses using the Medical Internal Radiation Dose (MIRD) formalism. In vivo studies were performed using female NSG mice bearing orthotopic MDA-MB-231.hNIS-GFP tumors and compared with X-ray-treated (12.6-15 Gy) and untreated cohorts. Absorbed dose per unit activity in tumors and sodium iodide symporter-expressing organs was extrapolated to reference human adult models using OLINDA/EXM. RESULTS: [99mTc]TcO4- and [123I]I- reduced the survival fraction only in hNIS-expressing cells, whereas [188Re]ReO4- reduced survival fraction in hNIS-expressing and parental cells. [123I]I- required 2.4- and 1.5-fold lower decays/cell to achieve 37% survival compared with [99mTc]TcO4- and [188Re]ReO4-, respectively, after 72 hours of incubation. Additionally, [99mTc]TcO4-, [123I]I-, and [188Re]ReO4- had superior cell killing effectiveness in vitro compared with X-rays. In vivo, X-ray led to a greater median survival compared with [188Re]ReO4- and [123I]I- (54 days vs 45 and 43 days, respectively). Unlike the X-ray cohort, no metastases were visualized in the radionuclide-treated cohorts. Extrapolated human absorbed doses of [188Re]ReO4- to a 1 g tumor were 13.8- and 11.2-fold greater than for [123I]I- in female and male models, respectively. CONCLUSIONS: This work reports reference dose-effect data using cell and tumor models for [99mTc]TcO4-, [123I]I-, and [188Re]ReO4- for the first time. We further demonstrate the tumor-controlling effects of [123I]I- and [188Re]ReO4- in comparison with external beam radiation therapy.

3.
Front Young Minds ; 102022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38812470

RESUMEN

The splitting of atoms, also known as nuclear fission, is the physics behind radiation and radioactivity. Dr Lise Meitner discovered how radioactivity could be produced in 1939. She realised firing a small particle present in the nucleus of all atoms, a neutron, at another atom could release energy in the form of radiation. Radioactive atoms can also be created in this way and are useful in detecting cancer or checking if the brain and heart are working properly. This is because when radioactive atoms are injected into the blood vein of a patient, they travel through the body and release radiation that is detected using special cameras. This creates images or videos of tumours or normal tissues inside the body. Radiation therefore helps doctors diagnose and treat patients better. Unfortunately, Dr Meitner was never credited officially for her key discovery of nuclear fission.

4.
Nat Commun ; 12(1): 3636, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140467

RESUMEN

To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Reparación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas/efectos de los fármacos , Regulación Alostérica , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleasas/antagonistas & inhibidores , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Recombinación Homóloga/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones , Organoides/efectos de los fármacos , Neoplasias Ováricas/genética , Ratas , Mutaciones Letales Sintéticas/genética , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , ADN Polimerasa theta
5.
Oncoimmunology ; 7(8): e1458810, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221055

RESUMEN

mTOR inhibition can promote or inhibit immune responses in a context dependent manner, but whether this will represent a net benefit or be contraindicated in the context of immunooncology therapies is less understood. Here, we report that the mTORC1/2 dual kinase inhibitor vistusertib (AZD2014) potentiates anti-tumour immunity in combination with anti-CTLA-4 (αCTLA-4), αPD-1 or αPD-L1 immune checkpoint blockade. Combination of vistusertib and immune checkpoint blocking antibodies led to tumour growth inhibition and improved survival of MC-38 or CT-26 pre-clinical syngeneic tumour models, whereas monotherapies were less effective. Underlying these combinatorial effects, vistusertib/immune checkpoint combinations reduced the occurrence of exhausted phenotype tumour infiltrating lymphocytes (TILs), whilst increasing frequencies of activated Th1 polarized T-cells in tumours. Vistusertib alone was shown to promote a Th1 polarizing proinflammatory cytokine profile by innate primary immune cells. Moreover, vistusertib directly enhanced activation of effector T-cell and survival, an effect that was critically dependent on inhibitor dose. Therefore, these data highlight direct, tumour-relevant immune potentiating benefits of mTOR inhibition that complement immune checkpoint blockade. Together, these data provide a clear rationale to investigate such combinations in the clinic.

6.
J Immunother Cancer ; 6(1): 158, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30587236

RESUMEN

PI3K inhibitors with differential selectivity to distinct PI3K isoforms have been tested extensively in clinical trials, largely to target tumor epithelial cells. PI3K signaling also regulates the immune system and inhibition of PI3Kδ modulate the tumor immune microenvironment of pre-clinical mouse tumor models by relieving T-regs-mediated immunosuppression. PI3K inhibitors as a class and PI3Kδ specifically are associated with immune-related side effects. However, the impact of mixed PI3K inhibitors in tumor immunology is under-explored. Here we examine the differential effects of AZD8835, a dual PI3Kα/δ inhibitor, specifically on the tumor immune microenvironment using syngeneic models. Continuous suppression of PI3Kα/δ was not required for anti-tumor activity, as tumor growth inhibition was potentiated by an intermittent dosing/schedule in vivo. Moreover, PI3Kα/δ inhibition delivered strong single agent anti-tumor activity, which was associated with dynamic suppression of T-regs, improved CD8+ T-cell activation and memory in mouse syngeneic tumor models. Strikingly, AZD8835 promoted robust CD8+ T-cell activation dissociated from its effect on T-regs. This was associated with enhancing effector cell viability/function. Together these data reveal novel mechanisms by which PI3Kα/δ inhibitors interact with the immune system and validate the clinical compound AZD8835 as a novel immunoncology drug, independent of effects on tumor cells. These data support further clinical investigation of PI3K pathway inhibitors as immuno-oncology agents.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Inmunomodulación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Interleucina-2/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Oxadiazoles/farmacología , Piperidinas/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA