Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 443(7110): 439-43, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17006511

RESUMEN

Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Niño event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.


Asunto(s)
Atmósfera/química , Metano/análisis , Biomasa , Combustibles Fósiles , Efecto Invernadero , Actividades Humanas , Radical Hidroxilo/química , Metano/metabolismo , Factores de Tiempo
2.
Science ; 309(5741): 1714-7, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-16151008

RESUMEN

We report a 2000-year Antarctic ice-core record of stable carbon isotope measurements in atmospheric methane (delta13CH4). Large delta13CH4 variations indicate that the methane budget varied unexpectedly during the late preindustrial Holocene (circa 0 to 1700 A.D.). During the first thousand years (0 to 1000 A.D.), delta13CH4 was at least 2 per mil enriched compared to expected values, and during the following 700 years, an about 2 per mil depletion occurred. Our modeled methane source partitioning implies that biomass burning emissions were high from 0 to 1000 A.D. but reduced by almost approximately 40% over the next 700 years. We suggest that both human activities and natural climate change influenced preindustrial biomass burning emissions and that these emissions have been previously understated in late preindustrial Holocene methane budget research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA