Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Eur Radiol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060004

RESUMEN

The Contrast Media Safety Committee of the European Society of Urogenital Radiology has, together with the Preanalytical Phase Working Group of the EFLM Science Committee, reviewed the literature and updated its recommendations to increase awareness and provide insight into these interferences. CLINICAL RELEVANCE STATEMENT: Contrast Media may interfere with clinical laboratory tests. Awareness of potential interference may prevent unwanted misdiagnosis. KEY POINTS: • Contrast Media may interfere with clinical laboratory tests; therefore awareness of potential interference may prevent unwanted misdiagnosis. • Clinical Laboratory tests should be performed prior to radiological imaging with contrast media or alternatively, blood or urine collection should be delayed, depending on kidney function.

3.
Clin Chem ; 67(8): 1144-1152, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34061171

RESUMEN

BACKGROUND: The CARdiac MARker Guideline Uptake in Europe (CAMARGUE) program is a multi-country audit of the use of cardiac biomarkers in routine clinical practice. METHODS: An email link to a web-based questionnaire of 30 multiple-choice questions was distributed via the professional societies in Europe. RESULTS: 374 questionnaires were returned from 39 countries, the majority of which were in northern Europe with a response rate of 8.2%-42.0%. The majority of the respondents were from hospitals with proportionately more responses from central hospitals than district hospitals. Cardiac troponin was the preferred cardiac biomarker, evenly split between cardiac troponin T (cTnT) and cardiac troponin I (cTnI). Aspartate transaminase and lactate dehydrogenase are no longer offered as cardiac biomarkers. Creatine kinase, creatine kinase MB isoenzyme, and myoglobin continue to be offered as part of the cardiac biomarker profile in approximately on 50% of respondents. There is widespread utilization of high sensitivity (hs) troponin assays. The majority of cTnT users measure hs-cTnT. 29.5% of laboratories measure cTnI by a non-hs method but there has been substantial conversion to hs-cTnI. The majority of respondents used ng/L and use the 99th percentile as the upper reference limit (71.9% of respondents). A range of diagnostic protocols are in use. CONCLUSIONS: There is widespread utilization of hs troponin methods. A significant minority do not use the 99th percentile as recommended and there is, as yet, little uptake of very rapid diagnostic strategies. Education of laboratory professionals and clinicians remains a priority.


Asunto(s)
Laboratorios , Troponina T , Biomarcadores , Forma MB de la Creatina-Quinasa , Humanos , Troponina I
4.
Clin Chem Lab Med ; 58(4): 496-517, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31855562

RESUMEN

The joint consensus panel of the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) recently addressed present and future challenges in the laboratory diagnostics of atherogenic lipoproteins. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDLC), LDL cholesterol (LDLC), and calculated non-HDLC (=total - HDLC) constitute the primary lipid panel for estimating risk of atherosclerotic cardiovascular disease (ASCVD) and can be measured in the nonfasting state. LDLC is the primary target of lipid-lowering therapies. For on-treatment follow-up, LDLC shall be measured or calculated by the same method to attenuate errors in treatment decisions due to marked between-method variations. Lipoprotein(a) [Lp(a)]-cholesterol is part of measured or calculated LDLC and should be estimated at least once in all patients at risk of ASCVD, especially in those whose LDLC declines poorly upon statin treatment. Residual risk of ASCVD even under optimal LDL-lowering treatment should be also assessed by non-HDLC or apolipoprotein B (apoB), especially in patients with mild-to-moderate hypertriglyceridemia (2-10 mmol/L). Non-HDLC includes the assessment of remnant lipoprotein cholesterol and shall be reported in all standard lipid panels. Additional apoB measurement can detect elevated LDL particle (LDLP) numbers often unidentified on the basis of LDLC alone. Reference intervals of lipids, lipoproteins, and apolipoproteins are reported for European men and women aged 20-100 years. However, laboratories shall flag abnormal lipid values with reference to therapeutic decision thresholds.


Asunto(s)
Aterosclerosis/diagnóstico , LDL-Colesterol/sangre , Lipoproteína(a)/sangre , Apolipoproteínas B/sangre , Aterosclerosis/tratamiento farmacológico , Biomarcadores/sangre , HDL-Colesterol/sangre , Consenso , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Fase Preanalítica , Sociedades Médicas
5.
Curr Cardiol Rep ; 22(8): 67, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32562186

RESUMEN

PURPOSE OF REVIEW: Guidelines propose using non-HDL cholesterol or apolipoprotein (apo) B as a secondary treatment target to reduce residual cardiovascular risk of LDL-targeted therapies. This review summarizes the strengths, weaknesses, opportunities, and threats (SWOT) of using apoB compared with non-HDL cholesterol. RECENT FINDINGS: Non-HDL cholesterol, calculated as total-HDL cholesterol, includes the assessment of remnant lipoprotein cholesterol, an additional risk factor independent of LDL cholesterol. ApoB is a direct measure of circulating numbers of atherogenic lipoproteins, and its measurement can be standardized across laboratories worldwide. Discordance analysis of non-HDL cholesterol versus apoB demonstrates that apoB is the more accurate marker of cardiovascular risk. Baseline and on-treatment apoB can identify elevated numbers of small cholesterol-depleted LDL particles that are not reflected by LDL and non-HDL cholesterol. ApoB is superior to non-HDL cholesterol as a secondary target in patients with mild-to-moderate hypertriglyceridemia (175-880 mg/dL), diabetes, obesity or metabolic syndrome, or very low LDL cholesterol < 70 mg/dL. When apoB is not available, non-HDL cholesterol should be used to supplement LDLC.


Asunto(s)
Apolipoproteínas B , Enfermedades Cardiovasculares , Colesterol , HDL-Colesterol , LDL-Colesterol , Humanos , Lipoproteínas
7.
Clin Chem ; 64(7): 1006-1033, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29760220

RESUMEN

BACKGROUND: The European Atherosclerosis Society-European Federation of Clinical Chemistry and Laboratory Medicine Consensus Panel aims to provide recommendations to optimize atherogenic lipoprotein quantification for cardiovascular risk management. CONTENT: We critically examined LDL cholesterol, non-HDL cholesterol, apolipoprotein B (apoB), and LDL particle number assays based on key criteria for medical application of biomarkers. (a) Analytical performance: Discordant LDL cholesterol quantification occurs when LDL cholesterol is measured or calculated with different assays, especially in patients with hypertriglyceridemia >175 mg/dL (2 mmol/L) and low LDL cholesterol concentrations <70 mg/dL (1.8 mmol/L). Increased lipoprotein(a) should be excluded in patients not achieving LDL cholesterol goals with treatment. Non-HDL cholesterol includes the atherogenic risk component of remnant cholesterol and can be calculated in a standard nonfasting lipid panel without additional expense. ApoB more accurately reflects LDL particle number. (b) Clinical performance: LDL cholesterol, non-HDL cholesterol, and apoB are comparable predictors of cardiovascular events in prospective population studies and clinical trials; however, discordance analysis of the markers improves risk prediction by adding remnant cholesterol (included in non-HDL cholesterol) and LDL particle number (with apoB) risk components to LDL cholesterol testing. (c) Clinical and cost-effectiveness: There is no consistent evidence yet that non-HDL cholesterol-, apoB-, or LDL particle-targeted treatment reduces the number of cardiovascular events and healthcare-related costs than treatment targeted to LDL cholesterol. SUMMARY: Follow-up of pre- and on-treatment (measured or calculated) LDL cholesterol concentration in a patient should ideally be performed with the same documented test method. Non-HDL cholesterol (or apoB) should be the secondary treatment target in patients with mild to moderate hypertriglyceridemia, in whom LDL cholesterol measurement or calculation is less accurate and often less predictive of cardiovascular risk. Laboratories should report non-HDL cholesterol in all standard lipid panels.


Asunto(s)
Aterosclerosis/sangre , LDL-Colesterol/sangre , Consenso , Medicina de Precisión , Humanos
9.
Curr Cardiol Rep ; 20(10): 88, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120626

RESUMEN

PURPOSE OF REVIEW: To summarize and discuss the clinical use of lipid and apolipoprotein tests in the settings of diagnosis and therapeutic follow-up of hyperlipidemia. RECENT FINDINGS: The joint consensus panel of the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) recently produced recommendations on the measurement of atherogenic lipoproteins, taking into account the strengths and weaknesses of analytical and clinical performances of the tests. Total cholesterol, triglycerides, HDL cholesterol, LDL cholesterol, and calculated non-HDL cholesterol (= LDL + remnant cholesterol) constitute the primary lipid panel for hyperlipidemia diagnosis and cardiovascular risk estimation. LDL cholesterol is the primary target of lipid-lowering therapies. Non-HDL cholesterol or apolipoprotein B should be used as secondary therapeutic target in patients with mild-to-moderate hypertriglyceridemia, 2-10 mmol/l (175-880 mg/dl). Lipoprotein (a) is included in LDL cholesterol and should be measured at least once in all patients at cardiovascular risk, including to explain poor response to statin treatment.


Asunto(s)
Apolipoproteínas B/sangre , LDL-Colesterol/sangre , Hiperlipidemias/diagnóstico , Lipoproteínas/sangre , Monitoreo de Drogas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , Factores de Riesgo
10.
Clin Chem Lab Med ; 55(6): 806-808, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816949

RESUMEN

Several studies have shown that recommendations related to how laboratory testing should be performed and results interpreted are limited in medical guidelines and that the uptake and implementation of the recommendations that are available need improvement. The EFLM/UEMS Working Group on Guidelines conducted a survey amongst the national societies for clinical chemistry in Europe regarding development of laboratory-related guidelines. The results showed that most countries have guidelines that are specifically related to laboratory testing; however, not all countries have a formal procedure for accepting such guidelines and few countries have guideline committees. Based on this, the EFLM/UEMS Working Group on Guidelines conclude that there is still room for improvement regarding these processes in Europe and raise the question if the accreditation bodies could be a facilitator for an improvement.


Asunto(s)
Acreditación , Laboratorios/normas , Guías de Práctica Clínica como Asunto , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA